Files
OpenSpace/modules/globebrowsing/rendering/culling.cpp

250 lines
11 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2016 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/globebrowsing/rendering/culling.h>
#include <modules/globebrowsing/rendering/aabb.h>
#include <modules/globebrowsing/geodetics/ellipsoid.h>
#include <modules/globebrowsing/meshes/trianglesoup.h>
namespace {
const std::string _loggerCat = "FrustrumCuller";
}
namespace openspace {
//////////////////////////////////////////////////////////////////////////////////////
// FRUSTUM CULLER //
//////////////////////////////////////////////////////////////////////////////////////
FrustumCuller::FrustumCuller() {
}
FrustumCuller::~FrustumCuller() {
}
bool FrustumCuller::isVisible(
const RenderData& data,
const vec3& point) {
mat4 modelTransform = translate(mat4(1), data.position.vec3());
mat4 viewTransform = data.camera.combinedViewMatrix();
mat4 modelViewProjectionTransform = data.camera.projectionMatrix()
* viewTransform * modelTransform;
vec2 pointScreenSpace =
transformToScreenSpace(point, modelViewProjectionTransform);
return testPoint(pointScreenSpace, vec2(0));
}
bool FrustumCuller::isVisible(const RenderData& data, const GeodeticPatch& patch,
const Ellipsoid& ellipsoid)
{
// An axis aligned bounding box based on the patch's minimum boudning sphere is
// used for testnig
//mat4 viewTransform = glm::lookAt(vec3(6378137.0 + 1000, 0, 0), vec3(0, 5e6, 1e7), vec3(0, 0, 1)); //data.camera.combinedViewMatrix
//Vec3 cameraPosition = vec3(inverse(viewTransform) * vec4(0, 0, 0, 1));// data.camera.position().dvec3();
// Calculate the MVP matrix
mat4 modelTransform = translate(mat4(1), data.position.vec3());
mat4 viewTransform = data.camera.combinedViewMatrix();
mat4 modelViewProjectionTransform = data.camera.projectionMatrix()
* viewTransform * modelTransform;
// Calculate the patch's center point in screen space
vec4 patchCenterModelSpace =
vec4(ellipsoid.cartesianSurfacePosition(patch.center()), 1);
vec4 patchCenterClippingSpace =
modelViewProjectionTransform * patchCenterModelSpace;
vec2 pointScreenSpace =
(1.0f / patchCenterClippingSpace.w) * patchCenterClippingSpace.xy();
// Calculate the screen space margin that represents an axis aligned bounding
// box based on the patch's minimum boudning sphere
double boundingRadius = patch.minimalBoundingRadius(ellipsoid);
vec4 marginClippingSpace =
vec4(vec3(boundingRadius), 0) * data.camera.projectionMatrix();
vec2 marginScreenSpace =
(1.0f / patchCenterClippingSpace.w) * marginClippingSpace.xy();
// Test the bounding box by testing the center point and the corresponding margin
PointLocation res = testPoint(pointScreenSpace, marginScreenSpace);
return res == PointLocation::Inside;
}
bool FrustumCuller::isVisible(const RenderData& data, const GeodeticPatch& patch,
const Ellipsoid& ellipsoid, const Scalar maxHeight)
{
// Calculate the MVP matrix
mat4 modelTransform = translate(mat4(1), data.position.vec3());
mat4 viewTransform = data.camera.combinedViewMatrix();
mat4 modelViewProjectionTransform = data.camera.projectionMatrix()
* viewTransform * modelTransform;
double centerRadius = ellipsoid.maximumRadius();
//double centerRadius = glm::length(ellipsoid.cartesianSurfacePosition(patch.center()));
double maxCenterRadius = centerRadius + maxHeight;
double maximumPatchSide = max(patch.halfSize().lat, patch.halfSize().lon);
double maxHeightOffset = maxCenterRadius / cos(maximumPatchSide) - centerRadius;
double minHeightOffset = 0; // for now
/*
Geodetic3 centerGeodetic = { patch.center(), 0};
vec4 centerModelSpace = vec4(ellipsoid.cartesianPosition(centerGeodetic), 1);
vec4 centerClippingSpace = modelViewProjectionTransform * centerModelSpace;
vec3 centerScreenSpace = (1.0f / glm::abs(centerClippingSpace.w)) * centerClippingSpace.xyz();
AABB3 viewFrustum(vec3(-1, -1, 0), vec3(1, 1, 1e35));
return viewFrustum.intersects(centerScreenSpace);
*/
// Create a bounding box that fits the patch corners
AABB3 bounds; // in screen space
int numPositiveZ = 0;
for (size_t i = 0; i < 8; i++) {
Quad q = (Quad) (i%4);
double offset = i < 4 ? minHeightOffset : maxHeightOffset;
Geodetic3 cornerGeodetic = { patch.getCorner(q), offset };
vec4 cornerModelSpace = vec4(ellipsoid.cartesianPosition(cornerGeodetic), 1);
vec4 cornerClippingSpace = modelViewProjectionTransform * cornerModelSpace;
vec3 cornerScreenSpace = (1.0f / glm::abs(cornerClippingSpace.w)) * cornerClippingSpace.xyz();
bounds.expand(cornerScreenSpace);
}
AABB3 viewFrustum(vec3(-1, -1, 0), vec3(1, 1, 1e35));
return bounds.intersects(viewFrustum);
/*
vec2 center = bounds.center();
vec2 margin = 0.5f * bounds.size();
return testPoint(center, margin) == PointLocation::Inside;
*/
}
PointLocation FrustumCuller::testPoint(const glm::vec2& pointScreenSpace,
const glm::vec2& marginScreenSpace)
{
const vec2& p = pointScreenSpace;
vec2 cullBounds = vec2(1) + marginScreenSpace;
int x = p.x <= -cullBounds.x ? 0 : p.x < cullBounds.x ? 1 : 2;
int y = p.y <= -cullBounds.y ? 0 : p.y < cullBounds.y ? 1 : 2;
PointLocation res = (PointLocation) (3 * y + x);
return res;
}
bool FrustumCuller::testPoint(const glm::vec3& pointScreenSpace,
const glm::vec3& marginScreenSpace)
{
const vec3& p = pointScreenSpace;
vec3 cullBounds = vec3(1) + marginScreenSpace;
int x = p.x <= -cullBounds.x ? 0 : p.x < cullBounds.x ? 1 : 2;
int y = p.y <= -cullBounds.y ? 0 : p.y < cullBounds.y ? 1 : 2;
int z = p.z <= -cullBounds.z ? 0 : p.z < cullBounds.z ? 1 : 2;
return x == 1 && y == 1 && z == 1;
}
glm::vec2 FrustumCuller::transformToScreenSpace(const vec3& point,
const mat4x4& modelViewProjection)
{
vec4 pointProjectionSpace = modelViewProjection * vec4(point, 1.0f);
vec2 pointScreenSpace =
(1.0f / pointProjectionSpace.w) * pointProjectionSpace.xy();
return pointScreenSpace;
}
//////////////////////////////////////////////////////////////////////////////////////
// HORIZON CULLER //
//////////////////////////////////////////////////////////////////////////////////////
HorizonCuller::HorizonCuller() {
}
HorizonCuller::~HorizonCuller() {
}
bool HorizonCuller::isVisible(
const Vec3& cameraPosition,
const Vec3& globePosition,
const Vec3& objectPosition,
Scalar objectBoundingSphereRadius,
Scalar minimumGlobeRadius)
{
Scalar distanceToHorizon =
sqrt(pow(length(cameraPosition - globePosition), 2) - pow(minimumGlobeRadius, 2));
Scalar minimumAllowedDistanceToObjectFromHorizon = sqrt(
pow(length(objectPosition - globePosition), 2) -
pow(minimumGlobeRadius - objectBoundingSphereRadius, 2));
// Minimum allowed for the object to be occluded
Scalar minimumAllowedDistanceToObjectSquared =
pow(distanceToHorizon + minimumAllowedDistanceToObjectFromHorizon, 2)
+ pow(objectBoundingSphereRadius, 2);
Scalar distanceToObjectSquared = pow(length(objectPosition - cameraPosition), 2);
return distanceToObjectSquared < minimumAllowedDistanceToObjectSquared;
}
bool HorizonCuller::isVisible(
const RenderData& data,
const GeodeticPatch& patch,
const Ellipsoid& ellipsoid,
float height)
{
Vec3 globePosition = data.position.dvec3();
Scalar minimumGlobeRadius = ellipsoid.minimumRadius();
Vec3 cameraPosition = data.camera.position().dvec3();
Vec3 globeToCamera = cameraPosition - globePosition;
Geodetic2 cameraPositionOnGlobe =
ellipsoid.cartesianToGeodetic2(globeToCamera);
Geodetic2 closestPatchPoint = patch.closestPoint(cameraPositionOnGlobe);
return HorizonCuller::isVisible(
cameraPosition,
globePosition,
ellipsoid.cartesianSurfacePosition(closestPatchPoint),
height,
minimumGlobeRadius);
}
} // namespace openspace