Files
OpenSpace/modules/iswa/rendering/dataplane.cpp

527 lines
18 KiB
C++

// /*****************************************************************************************
// * *
// * OpenSpace *
// * *
// * Copyright (c) 2014-2016 *
// * *
// * Permission is hereby granted, free of charge, to any person obtaining a copy of this *
// * software and associated documentation files (the "Software"), to deal in the Software *
// * without restriction, including without limitation the rights to use, copy, modify, *
// * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
// * permit persons to whom the Software is furnished to do so, subject to the following *
// * conditions: *
// * *
// * The above copyright notice and this permission notice shall be included in all copies *
// * or substantial portions of the Software. *
// * *
// * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
// * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
// * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
// * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
// * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
// * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
// ****************************************************************************************/
#include <modules/iswa/rendering/dataplane.h>
#include <fstream>
#include <ghoul/io/texture/texturereader.h>
#include <ghoul/opengl/programobject.h>
#include <ghoul/opengl/textureunit.h>
#include <openspace/scene/scene.h>
#include <openspace/scene/scenegraphnode.h>
#include <openspace/engine/openspaceengine.h>
#include <openspace/rendering/renderengine.h>
#include <openspace/util/spicemanager.h>
#include <ghoul/filesystem/filesystem.h>
namespace {
const std::string _loggerCat = "DataPlane";
}
namespace openspace {
DataPlane::DataPlane(const ghoul::Dictionary& dictionary)
:CygnetPlane(dictionary)
,_useLog("useLog","Use Logarithm", false)
,_useHistogram("_useHistogram", "Use Histogram", true)
,_normValues("normValues", "Normalize Values", glm::vec2(1.0,1.0), glm::vec2(0), glm::vec2(5.0))
,_backgroundValues("backgroundValues", "Background Values", glm::vec2(0.0), glm::vec2(0), glm::vec2(1.0))
,_transferFunctionsFile("transferfunctions", "Transfer Functions", "${SCENE}/iswa/tfs/hot.tf")
,_dataOptions("dataOptions", "Data Options")
// ,_colorbar(nullptr)
{
std::string name;
dictionary.getValue("Name", name);
setName(name);
registerProperties();
addProperty(_useLog);
addProperty(_useHistogram);
addProperty(_normValues);
addProperty(_backgroundValues);
addProperty(_transferFunctionsFile);
addProperty(_dataOptions);
if(_data->groupId < 0){
OsEng.gui()._iswa.registerProperty(&_useLog);
OsEng.gui()._iswa.registerProperty(&_useHistogram);
OsEng.gui()._iswa.registerProperty(&_normValues);
OsEng.gui()._iswa.registerProperty(&_backgroundValues);
OsEng.gui()._iswa.registerProperty(&_transferFunctionsFile);
OsEng.gui()._iswa.registerProperty(&_dataOptions);
}
_normValues.onChange([this](){
// FOR TESTING (should be done on all onChange)
// _avgBenchmarkTime = 0.0;
// _numOfBenchmarks = 0;
loadTexture();});
_useLog.onChange([this](){loadTexture();});
_useHistogram.onChange([this](){loadTexture();});
_dataOptions.onChange([this](){ loadTexture();} );
_transferFunctionsFile.onChange([this](){
setTransferFunctions(_transferFunctionsFile.value());
});
_type = ISWAManager::CygnetType::Data;
setTransferFunctions(_transferFunctionsFile.value());
}
DataPlane::~DataPlane(){}
bool DataPlane::loadTexture() {
// if The future is done then get the new dataFile
if(_futureObject.valid() && DownloadManager::futureReady(_futureObject)){
_dataFile = _futureObject.get();
if(_dataFile.corrupted)
return false;
}
// if the buffer in the datafile is empty, do not proceed
if(_dataFile.buffer.empty())
return false;
std::vector<float*> data = readData(_dataFile.buffer);
if(data.empty())
return false;
bool texturesReady = false;
std::vector<int> selectedOptions = _dataOptions.value();
for(int option: selectedOptions){
float* values = data[option];
if(!values) continue;
if(!_textures[option]){
std::unique_ptr<ghoul::opengl::Texture> texture = std::make_unique<ghoul::opengl::Texture>(
values,
_dimensions,
ghoul::opengl::Texture::Format::Red,
GL_RED,
GL_FLOAT,
ghoul::opengl::Texture::FilterMode::Linear,
ghoul::opengl::Texture::WrappingMode::ClampToEdge
);
if(texture){
texture->uploadTexture();
texture->setFilter(ghoul::opengl::Texture::FilterMode::Linear);
_textures[option] = std::move(texture);
}
}else{
_textures[option]->setPixelData(values);
_textures[option]->uploadTexture();
}
texturesReady = true;
}
return texturesReady;
}
bool DataPlane::updateTexture(){
if(_futureObject.valid())
return false;
std::future<DownloadManager::MemoryFile> future = ISWAManager::ref().fetchDataCygnet(_data->id);
if(future.valid()){
_futureObject = std::move(future);
return true;
}
return false;
}
bool DataPlane::readyToRender(){
return (!_textures.empty());
}
bool DataPlane::setUniformAndTextures(){
// _shader->setUniform("textures", 1, units[1]);
// _shader->setUniform("textures", 2, units[2]);
// }
std::vector<int> selectedOptions = _dataOptions.value();
int activeTextures = selectedOptions.size();
int activeTransferfunctions = _transferFunctions.size();
ghoul::opengl::TextureUnit txUnits[10];
int j = 0;
for(int option : selectedOptions){
if(_textures[option]){
txUnits[j].activate();
_textures[option]->bind();
_shader->setUniform(
"textures[" + std::to_string(j) + "]",
txUnits[j]
);
j++;
}
}
ghoul::opengl::TextureUnit tfUnits[10];
j = 0;
if((activeTransferfunctions == 1) && (_textures.size() != _transferFunctions.size())){
tfUnits[0].activate();
_transferFunctions[0]->bind();
_shader->setUniform(
"transferFunctions[0]",
tfUnits[0]
);
}else{
for(int option : selectedOptions){
if(_transferFunctions[option]){
tfUnits[j].activate();
_transferFunctions[option]->bind();
_shader->setUniform(
"transferFunctions[" + std::to_string(j) + "]",
tfUnits[j]
);
j++;
}
}
}
_shader->setUniform("numTextures", activeTextures);
_shader->setUniform("numTransferFunctions", activeTransferfunctions);
_shader->setUniform("backgroundValues", _backgroundValues.value());
}
bool DataPlane::createShader(){
if (_shader == nullptr) {
// DatePlane Program
RenderEngine& renderEngine = OsEng.renderEngine();
_shader = renderEngine.buildRenderProgram("DataPlaneProgram",
"${MODULE_ISWA}/shaders/dataplane_vs.glsl",
"${MODULE_ISWA}/shaders/dataplane_fs.glsl"
);
if (!_shader) return false;
}
}
void DataPlane::readHeader(std::string& _memorybuffer){
if(!_memorybuffer.empty()){
std::stringstream memorystream(_memorybuffer);
std::string line;
int numOptions = 0;
while(getline(memorystream,line)){
if(line.find("#") == 0){
if(line.find("# Output data:") == 0){
line = line.substr(26);
std::stringstream ss(line);
std::string token;
getline(ss, token, 'x');
int x = std::stoi(token);
getline(ss, token, '=');
int y = std::stoi(token);
_dimensions = glm::size3_t(x, y, 1);
getline(memorystream, line);
line = line.substr(1);
ss = std::stringstream(line);
std::string option;
while(ss >> option){
if(option != "x" && option != "y" && option != "z"){
_dataOptions.addOption({numOptions, name()+"_"+option});
numOptions++;
_textures.push_back(nullptr);
}
}
_dataOptions.setValue(std::vector<int>(1,0));
if(_data->groupId > 0)
ISWAManager::ref().registerOptionsToGroup(_data->groupId, _dataOptions.options());
}
}else{
break;
}
}
}
}
std::vector<float*> DataPlane::readData(std::string& _memorybuffer){
if(!_memorybuffer.empty()){
if(!_dataOptions.options().size()) // load options for value selection
readHeader(_memorybuffer);
std::stringstream memorystream(_memorybuffer);
std::string line;
std::vector<int> selectedOptions = _dataOptions.value();
int numSelected = selectedOptions.size();
std::vector<float> min(numSelected, std::numeric_limits<float>::max());
std::vector<float> max(numSelected, std::numeric_limits<float>::min());
std::vector<float> sum(numSelected, 0.0f);
std::vector<std::vector<float>> optionValues(numSelected, std::vector<float>());
std::vector<float*> data(_dataOptions.options().size(), nullptr);
for(int option : selectedOptions){
data[option] = new float[_dimensions.x*_dimensions.y]{0.0f};
}
int numValues = 0;
while(getline(memorystream, line)){
if(line.find("#") == 0){ //part of the header
continue;
}
std::stringstream ss(line);
std::vector<float> value;
float v;
while(ss >> v){
value.push_back(v);
}
if(value.size()){
for(int i=0; i<numSelected; i++){
float v = value[selectedOptions[i]+3]; //+3 because "options" x, y and z.
if(_useLog.value()){
int sign = (v>0)? 1:-1;
if(v != 0){
v = sign*log(fabs(v));
}
}
optionValues[i].push_back(v);
min[i] = std::min(min[i], v);
max[i] = std::max(max[i], v);
sum[i] += v;
}
numValues++;
}
}
if(numValues != _dimensions.x*_dimensions.y){
LWARNING("Number of values read and expected are not the same");
return std::vector<float*>();
}
// FOR TESTING
// ===========
// std::chrono::time_point<std::chrono::system_clock> start, end;
// start = std::chrono::system_clock::now();
// ===========
for(int i=0; i<numSelected; i++){
processData(data[ selectedOptions[i] ], optionValues[i], min[i], max[i], sum[i]);
}
// FOR TESTING
// ===========
// end = std::chrono::system_clock::now();
// _numOfBenchmarks++;
// std::chrono::duration<double> elapsed_seconds = end-start;
// _avgBenchmarkTime = ( (_avgBenchmarkTime * (_numOfBenchmarks-1)) + elapsed_seconds.count() ) / _numOfBenchmarks;
// std::cout << " readData():" << std::endl;
// std::cout << "avg elapsed time: " << _avgBenchmarkTime << "s\n";
// std::cout << "num Benchmarks: " << _numOfBenchmarks << "\n";
// ===========
return data;
}
else {
// LWARNING("Nothing in memory buffer, are you connected to the information super highway?");
return std::vector<float*>();
}
}
void DataPlane::processData(float* outputData, std::vector<float>& inputData, float min, float max,float sum){
// HISTOGRAM
// number of levels/bins/values
const int levels = 512;
// Normal Histogram where "levels" is the number of steps/bins
std::vector<int> histogram = std::vector<int>(levels, 0);
// Maps the old levels to new ones.
std::vector<float> newLevels = std::vector<float>(levels, 0.0f);
const int numValues = inputData.size();
//FOR TESTING ONLY
//================
// float entropyBefore;
// float entropyAfter;
// std::vector<int> histogramAfter = std::vector<int>(levels, 0);
// auto calulateEntropy = [levels, numValues](std::vector<int> histogram){
// float entropy;
// for(auto frequency : histogram){
// if(frequency != 0)
// entropy -= ((float)frequency/numValues) * log2((float)frequency/numValues);
// }
// return entropy;
// };
//================
// maps the data values to the histogram bin/index/level
auto mapToHistogram = [levels](float val, float varMin, float varMax) {
float probability = (val-varMin)/(varMax-varMin);
float mappedValue = probability * levels;
return glm::clamp(mappedValue, 0.0f, static_cast<float>(levels - 1));
};
//Calculate the mean
float mean = (1.0 / numValues) * sum;
//Calculate the Standard Deviation
float standardDeviation = sqrt (((pow(sum, 2.0)) - ((1.0/numValues) * (pow(sum,2.0)))) / (numValues - 1.0));
//calulate log mean
// logmean /= numValues;
//HISTOGRAM FUNCTIONALITY
//======================
if(_useHistogram.value()){
for(int i = 0; i < numValues; i++){
float v = inputData[i];
float pixelVal = mapToHistogram(v, min, max);
histogram[(int)pixelVal]++;
inputData[i] = pixelVal;
}
// Map mean and standard deviation to histogram levels
mean = mapToHistogram(mean , min, max);
// logmean = mapToHistogram(logmean , min, max);
standardDeviation = mapToHistogram(standardDeviation, min, max);
min = 0.0f;
max = levels - 1.0f;
//FOR TESTING
//entropyBefore = calulateEntropy(histogram);
//Calculate the cumulative distributtion function (CDF)
float previousCdf = 0.0f;
for(int i = 0; i < levels; i++){
float probability = histogram[i] / (float)numValues;
float cdf = previousCdf + probability;
cdf = glm::clamp(cdf, 0.0f, 1.0f); //just in case
newLevels[i] = cdf * (levels-1);
previousCdf = cdf;
}
}
//======================
for(int i=0; i< numValues; i++){
float v = inputData[i];
// if use histogram get the equalized values
if(_useHistogram.value()){
v = newLevels[(int)v];
// FOR TESTING
//histogramAfter[(int)v]++;
// Map mean and standard deviation to new histogram levels
mean = newLevels[(int) mean];
// logmean = newLevels[(int) logmean];
standardDeviation = newLevels[(int) standardDeviation];
}
v = normalizeWithStandardScore(v, mean, standardDeviation);
outputData[i] += v;
}
// FOR TESTING
// ===========
// entropyAfter = calulateEntropy(histogramAfter);
// std::cout << "Entropy Before: "<< entropyBefore << std::endl;
// std::cout << "Entropy After: "<< entropyAfter << std::endl;
// ===========
}
float DataPlane::normalizeWithStandardScore(float value, float mean, float sd){
float zScoreMin = _normValues.value().x;
float zScoreMax = _normValues.value().y;
float standardScore = ( value - mean ) / sd;
// Clamp intresting values
standardScore = glm::clamp(standardScore, -zScoreMin, zScoreMax);
//return and normalize
return ( standardScore + zScoreMin )/(zScoreMin + zScoreMax );
}
void DataPlane::setTransferFunctions(std::string tfPath){
std::string line;
std::ifstream tfFile(absPath(tfPath));
std::vector<std::shared_ptr<TransferFunction>> tfs;
if(tfFile.is_open()){
while(getline(tfFile, line)){
std::shared_ptr<TransferFunction> tf = std::make_shared<TransferFunction>(absPath(line));
if(tf)
tfs.push_back(tf);
}
}
if(!tfs.empty()){
_transferFunctions.clear();
_transferFunctions = tfs;
}
}
}// namespace openspace