Files
OpenSpace/modules/base/rendering/renderabletube.cpp

1544 lines
54 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2023 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/base/rendering/renderabletube.h>
#include <openspace/documentation/documentation.h>
#include <openspace/documentation/verifier.h>
#include <openspace/engine/globals.h>
#include <openspace/rendering/helper.h>
#include <openspace/rendering/renderengine.h>
#include <openspace/scene/lightsource.h>
#include <openspace/util/time.h>
#include <openspace/util/updatestructures.h>
#include <ghoul/filesystem/filesystem.h>
#include <ghoul/logging/logmanager.h>
#include <ghoul/opengl/openglstatecache.h>
#include <ghoul/opengl/programobject.h>
#include <ghoul/opengl/textureunit.h>
#include <ghoul/opengl/texture.h>
#include <glm/gtx/projection.hpp>
#include <optional>
using json = nlohmann::json;
namespace {
constexpr std::string_view _loggerCat = "RenderableTube";
constexpr int8_t CurrentMajorVersion = 0;
constexpr int8_t CurrentMinorVersion = 1;
constexpr std::array<const char*, 23> UniformNames = {
"modelViewTransform", "projectionTransform", "normalTransform", "opacity",
"color", "nanColor", "useNanColor", "aboveRangeColor", "useAboveRangeColor",
"belowRangeColor", "useBelowRangeColor", "useColorMap", "colorMapTexture",
"cmapRangeMin", "cmapRangeMax", "hideOutsideRange", "performShading",
"nLightSources", "lightDirectionsViewSpace", "lightIntensities",
"ambientIntensity", "diffuseIntensity", "specularIntensity"
};
constexpr openspace::properties::Property::PropertyInfo TransferFunctionInfo = {
"TransferFunctionPath",
"Transfer Function Path",
"Specifies the transfer function file path",
openspace::properties::Property::Visibility::AdvancedUser
};
constexpr openspace::properties::Property::PropertyInfo EnableFaceCullingInfo = {
"EnableFaceCulling",
"Enable Face Culling",
"Enable OpenGL automatic face culling optimization",
openspace::properties::Property::Visibility::AdvancedUser
};
constexpr openspace::properties::Property::PropertyInfo ShadingEnabledInfo = {
"PerformShading",
"Perform Shading",
"This value determines whether shading should be applied to the tube",
openspace::properties::Property::Visibility::User
};
constexpr openspace::properties::Property::PropertyInfo AmbientIntensityInfo = {
"AmbientIntensity",
"Ambient Intensity",
"A multiplier for ambient lighting for the shading of the tube",
openspace::properties::Property::Visibility::User
};
constexpr openspace::properties::Property::PropertyInfo DiffuseIntensityInfo = {
"DiffuseIntensity",
"Diffuse Intensity",
"A multiplier for diffuse lighting for the shading of the tube",
openspace::properties::Property::Visibility::User
};
constexpr openspace::properties::Property::PropertyInfo SpecularIntensityInfo = {
"SpecularIntensity",
"Specular Intensity",
"A multiplier for specular lighting for the shading of the tube",
openspace::properties::Property::Visibility::User
};
constexpr openspace::properties::Property::PropertyInfo LightSourcesInfo = {
"LightSources",
"Light Sources",
"A list of light sources that this tube should accept light from",
openspace::properties::Property::Visibility::AdvancedUser
};
constexpr openspace::properties::Property::PropertyInfo TubeColorInfo = {
"FixedColor",
"Fixed Color",
"This value is used to define the color of the tube when no color map is"
"used",
openspace::properties::Property::Visibility::NoviceUser
};
constexpr openspace::properties::Property::PropertyInfo AddEdgesInfo = {
"AddEdges",
"Add Edges",
"This value determines whether a bottom and top should b eadded to the tube",
openspace::properties::Property::Visibility::User
};
constexpr openspace::properties::Property::PropertyInfo DrawWireframeInfo = {
"DrawWireframe",
"Wireframe",
"If true, draw the wire frame of the tube",
openspace::properties::Property::Visibility::AdvancedUser
};
constexpr openspace::properties::Property::PropertyInfo WireLineWidthInfo = {
"WireLineWidth",
"Wire Line Width",
"The line width to use when the tube is rendered as a wireframe",
openspace::properties::Property::Visibility::AdvancedUser
};
constexpr openspace::properties::Property::PropertyInfo UseSmoothNormalsInfo = {
"UseSmoothNormals",
"Use Smooth Normals",
"If ture, the tube is shaded using smooth normals. If false, every triangle "
"get its own normal, which can lead to harder shadows",
openspace::properties::Property::Visibility::AdvancedUser
};
constexpr openspace::properties::Property::PropertyInfo ShowAllTubeInfo = {
"ShowAllTube",
"Show all the tube",
"If ture, only the part of the tube that corresponds to the current time is "
"shown. If false, the whole tube is shown.",
openspace::properties::Property::Visibility::AdvancedUser
};
struct [[codegen::Dictionary(RenderableTube)]] Parameters {
// The input file with data for the tube
std::string file;
// [[codegen::verbatim(EnableFaceCullingInfo.description)]]
std::optional<bool> enableFaceCulling;
// [[codegen::verbatim(ShadingEnabledInfo.description)]]
std::optional<bool> performShading;
// [[codegen::verbatim(AmbientIntensityInfo.description)]]
std::optional<float> ambientIntensity [[codegen::inrange(0.f, 1.f)]];
// [[codegen::verbatim(DiffuseIntensityInfo.description)]]
std::optional<float> diffuseIntensity [[codegen::inrange(0.f, 1.f)]];
// [[codegen::verbatim(SpecularIntensityInfo.description)]]
std::optional<float> specularIntensity [[codegen::inrange(0.f, 1.f)]];
// [[codegen::verbatim(LightSourcesInfo.description)]]
std::optional<std::vector<ghoul::Dictionary>> lightSources
[[codegen::reference("core_light_source")]];
struct ColorSettings {
// [[codegen::verbatim(TubeColorInfo.description)]]
std::optional<glm::vec3> fixedColor [[codegen::color()]];
// Settings related to the choice of color map, parameters, etc.
std::optional<ghoul::Dictionary> colorMapping
[[codegen::reference("colormappingcomponent")]];
};
// Settings related to the coloring of the points, such as a fixed color,
// color map, etc.
std::optional<ColorSettings> coloring;
// [[codegen::verbatim(AddEdgesInfo.description)]]
std::optional<bool> addEdges;
// [[codegen::verbatim(DrawWireframeInfo.description)]]
std::optional<bool> drawWireframe;
// [[codegen::verbatim(WireLineWidthInfo.description)]]
std::optional<float> wireLineWidth;
// [[codegen::verbatim(UseSmoothNormalsInfo.description)]]
std::optional<bool> useSmoothNormals;
// [[codegen::verbatim(ShowAllTubeInfo.description)]]
std::optional<bool> showAllTube;
};
#include "renderabletube_codegen.cpp"
} // namespace
namespace openspace {
documentation::Documentation RenderableTube::Documentation() {
return codegen::doc<Parameters>("base_renderable_tube");
}
RenderableTube::Shading::Shading()
: properties::PropertyOwner({ "Shading" })
, enabled(ShadingEnabledInfo, true)
, ambientIntensity(AmbientIntensityInfo, 0.2f, 0.f, 1.f)
, diffuseIntensity(DiffuseIntensityInfo, 1.f, 0.f, 1.f)
, specularIntensity(SpecularIntensityInfo, 1.f, 0.f, 1.f)
{
addProperty(enabled);
addProperty(ambientIntensity);
addProperty(diffuseIntensity);
addProperty(specularIntensity);
}
RenderableTube::ColorSettings::ColorSettings(const ghoul::Dictionary& dictionary)
: properties::PropertyOwner({ "Coloring", "Coloring", "" })
, tubeColor(TubeColorInfo, glm::vec3(1.f), glm::vec3(0.f), glm::vec3(1.f))
{
const Parameters p = codegen::bake<Parameters>(dictionary);
if (p.coloring.has_value()) {
const Parameters::ColorSettings settings = *p.coloring;
tubeColor = settings.fixedColor.value_or(tubeColor);
if (settings.colorMapping.has_value()) {
colorMapping = std::make_unique<ColorMappingComponent>(
*settings.colorMapping
);
addPropertySubOwner(colorMapping.get());
}
}
tubeColor.setViewOption(properties::Property::ViewOptions::Color);
addProperty(tubeColor);
}
RenderableTube::RenderableTube(const ghoul::Dictionary& dictionary)
: Renderable(dictionary)
, _enableFaceCulling(EnableFaceCullingInfo, true)
, _lightSourcePropertyOwner({ "LightSources", "Light Sources" })
, _colorSettings(dictionary)
, _addEdges(AddEdgesInfo, true)
, _drawWireframe(DrawWireframeInfo, false)
, _wireLineWidth(WireLineWidthInfo, 1.f, 1.f, 10.f)
, _useSmoothNormals(UseSmoothNormalsInfo, true)
, _showAllTube(ShowAllTubeInfo, false)
{
const Parameters p = codegen::bake<Parameters>(dictionary);
_dataFile = p.file;
_enableFaceCulling = p.enableFaceCulling.value_or(_enableFaceCulling);
addProperty(_enableFaceCulling);
_shading.enabled = p.performShading.value_or(_shading.enabled);
_shading.ambientIntensity = p.ambientIntensity.value_or(_shading.ambientIntensity);
_shading.diffuseIntensity = p.diffuseIntensity.value_or(_shading.diffuseIntensity);
_shading.specularIntensity = p.specularIntensity.value_or(_shading.specularIntensity);
addPropertySubOwner(_shading);
if (p.lightSources.has_value()) {
std::vector<ghoul::Dictionary> lightsources = *p.lightSources;
for (const ghoul::Dictionary& lsDictionary : lightsources) {
std::unique_ptr<LightSource> lightSource =
LightSource::createFromDictionary(lsDictionary);
_lightSourcePropertyOwner.addPropertySubOwner(lightSource.get());
_lightSources.push_back(std::move(lightSource));
}
}
if (p.coloring.has_value() && (*p.coloring).colorMapping.has_value()) {
_hasColorMapFile = true;
_colorSettings.colorMapping->dataColumn.onChange(
[this]() { _tubeIsDirty = true; }
);
_colorSettings.colorMapping->setRangeFromData.onChange([this]() {
int parameterIndex = currentColorParameterIndex();
_colorSettings.colorMapping->valueRange = _colorDataset.findValueRange(
parameterIndex
);
});
}
addPropertySubOwner(_colorSettings);
_addEdges.onChange([this]() { _tubeIsDirty = true; });
_addEdges = p.addEdges.value_or(_addEdges);
addProperty(_addEdges);
_drawWireframe = p.drawWireframe.value_or(_drawWireframe);
addProperty(_drawWireframe);
_wireLineWidth = p.wireLineWidth.value_or(_wireLineWidth);
addProperty(_wireLineWidth);
_useSmoothNormals.onChange([this]() { _tubeIsDirty = true; });
_useSmoothNormals = p.useSmoothNormals.value_or(_useSmoothNormals);
addProperty(_useSmoothNormals);
_showAllTube = p.showAllTube.value_or(_showAllTube);
addProperty(_showAllTube);
addProperty(Fadeable::_opacity);
}
bool RenderableTube::isReady() const {
return _shader != nullptr;
}
void RenderableTube::initialize() {
readDataFile();
updateTube();
updateBufferData();
if (_hasColorMapFile) {
_colorSettings.colorMapping->initialize(_colorDataset);
}
for (const std::unique_ptr<LightSource>& ls : _lightSources) {
ls->initialize();
}
}
void RenderableTube::initializeGL() {
_shader = global::renderEngine->buildRenderProgram(
"TubeProgram",
absPath("${MODULE_BASE}/shaders/tube_vs.glsl"),
absPath("${MODULE_BASE}/shaders/tube_fs.glsl")
);
ghoul::opengl::updateUniformLocations(*_shader, _uniformCache, UniformNames);
if (_hasColorMapFile) {
_colorSettings.colorMapping->initializeTexture();
}
glGenVertexArrays(1, &_vaoId);
glGenBuffers(1, &_vboId);
glGenBuffers(1, &_iboId);
glBindVertexArray(_vaoId);
updateBufferData();
glEnableVertexAttribArray(0);
glVertexAttribLPointer(0, 3, GL_DOUBLE, sizeof(PolygonVertex), nullptr);
glEnableVertexAttribArray(1);
glVertexAttribPointer(
1,
3,
GL_FLOAT,
GL_FALSE,
sizeof(PolygonVertex),
reinterpret_cast<const GLvoid*>(offsetof(PolygonVertex, normal))
);
glEnableVertexAttribArray(2);
glVertexAttribPointer(
2,
1,
GL_FLOAT,
GL_FALSE,
sizeof(PolygonVertex),
reinterpret_cast<const GLvoid*>(offsetof(PolygonVertex, value))
);
// Ending
glGenVertexArrays(1, &_vaoIdEnding);
glGenBuffers(1, &_vboIdEnding);
glGenBuffers(1, &_iboIdEnding);
glBindVertexArray(_vaoIdEnding);
glBindBuffer(GL_ARRAY_BUFFER, _vboIdEnding);
glBufferData(
GL_ARRAY_BUFFER,
_verticiesEnding.size() * sizeof(PolygonVertex),
_verticiesEnding.data(),
GL_STREAM_DRAW
);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _iboIdEnding);
glBufferData(
GL_ELEMENT_ARRAY_BUFFER,
_indiciesEnding.size() * sizeof(unsigned int),
_indiciesEnding.data(),
GL_STREAM_DRAW
);
glEnableVertexAttribArray(0);
glVertexAttribLPointer(0, 3, GL_DOUBLE, sizeof(PolygonVertex), nullptr);
glEnableVertexAttribArray(1);
glVertexAttribPointer(
1,
3,
GL_FLOAT,
GL_FALSE,
sizeof(PolygonVertex),
reinterpret_cast<const GLvoid*>(offsetof(PolygonVertex, normal))
);
glEnableVertexAttribArray(2);
glVertexAttribPointer(
2,
1,
GL_FLOAT,
GL_FALSE,
sizeof(PolygonVertex),
reinterpret_cast<const GLvoid*>(offsetof(PolygonVertex, value))
);
glBindVertexArray(0);
}
void RenderableTube::deinitializeGL() {
global::renderEngine->removeRenderProgram(_shader.get());
_shader = nullptr;
glDeleteVertexArrays(1, &_vaoId);
_vaoId = 0;
glDeleteBuffers(1, &_vboId);
_vboId = 0;
glDeleteBuffers(1, &_iboId);
_iboId = 0;
// Ending
glDeleteVertexArrays(1, &_vaoIdEnding);
_vaoIdEnding = 0;
glDeleteBuffers(1, &_vboIdEnding);
_vboIdEnding = 0;
glDeleteBuffers(1, &_iboIdEnding);
_iboIdEnding = 0;
}
int RenderableTube::currentColorParameterIndex() const {
const properties::OptionProperty& property =
_colorSettings.colorMapping->dataColumn;
if (!_hasColorMapFile || property.options().empty()) {
return 0;
}
return _colorDataset.index(property.option().description);
}
void RenderableTube::readDataFile() {
std::filesystem::path file = absPath(_dataFile);
if (!std::filesystem::is_regular_file(file)) {
LWARNING(fmt::format("The data file '{}' could not be found", file));
return;
}
// Open file
std::ifstream fileStream(file);
if (!fileStream.good()) {
LERROR(fmt::format("Failed to open data file '{}'", file));
return;
}
// Read the entire file into a string
constexpr size_t readSize = std::size_t(4096);
fileStream.exceptions(std::ios_base::badbit);
std::string data;
std::string buf = std::string(readSize, '\0');
while (fileStream.read(buf.data(), readSize)) {
data.append(buf, 0, fileStream.gcount());
}
data.append(buf, 0, fileStream.gcount());
fileStream.close();
// Convert to a json object
json jsonData = json::parse(data);
// Check version
bool foundVersion = false;
if (auto version = jsonData.find("version"); version != jsonData.end()) {
auto major = version->find("major");
auto minor = version->find("minor");
if (major != version->end() && minor != version->end()) {
foundVersion = true;
if (*major != CurrentMajorVersion || *minor != CurrentMinorVersion) {
LWARNING(fmt::format(
"Unknown data version '{}.{}' found. The currently supported version "
"is {}.{}", major->dump(), minor->dump(), CurrentMajorVersion,
CurrentMinorVersion
));
}
}
}
if (!foundVersion) {
LWARNING("Could not find version information, version might not be supported");
}
// Find polygons
auto polygons = jsonData.find("polygons");
if (polygons == jsonData.end() || polygons->size() < 1) {
LERROR("Could not find any polygon in the data");
return;
}
// Loop throught json object to fill the datastructure for the polygons
bool isFirstPlygonAndPoint = true;
for (auto it = polygons->begin(); it < polygons->end(); ++it) {
TimePolygon timePolygon;
// Timestamp
auto time = it->find("time");
if (time == it->end()) {
LERROR("Could not find time for polygon in data");
return;
}
std::string timeString = time->dump();
timeString.erase(
std::remove(timeString.begin(), timeString.end(), '\"'),
timeString.end()
);
timePolygon.timestamp = Time::convertTime(timeString);
// Center
auto centerPt = it->find("center");
if (centerPt == it->end()) {
LERROR("Could not find center for polygon in data");
return;
}
double x, y, z;
centerPt->at("x").get_to(x);
centerPt->at("y").get_to(y);
centerPt->at("z").get_to(z);
timePolygon.center = glm::dvec3(x, y, z);
// Points
auto points = it->find("points");
if (points == it->end() || points->size() < 1) {
LERROR("Could not find points for polygon in data");
return;
}
for (auto pt = points->begin(); pt < points->end(); ++pt) {
TimePolygonPoint timePolygonPoint;
// Coordinates
auto px = pt->find("x");
auto py = pt->find("y");
auto pz = pt->find("z");
if (px == pt->end() || py == pt->end() || pz == pt->end()) {
LERROR("Could not find coordinate component for polygon in data");
return;
}
double x, y, z;
pt->at("x").get_to(x);
pt->at("y").get_to(y);
pt->at("z").get_to(z);
timePolygonPoint.coordinate = glm::dvec3(x, y, z);
// Data values (optional)
auto colorData = pt->find("data");
if (colorData != pt->end() && _hasColorMapFile) {
int colorDataIndex = 0;
dataloader::Dataset::Entry entry;
for (auto dt : colorData->items()) {
if (isFirstPlygonAndPoint) {
_colorDataset.variables.push_back({ .index = colorDataIndex++, .name = dt.key() });
}
entry.data.push_back(dt.value());
}
_colorDataset.entries.push_back(entry);
if (isFirstPlygonAndPoint) {
isFirstPlygonAndPoint = false;
}
}
timePolygon.points.push_back(timePolygonPoint);
}
_data.push_back(timePolygon);
}
}
void RenderableTube::updateTube() {
// Tube needs at least two polygons
const size_t nPolygons = _data.size();
if (nPolygons < 2) {
LERROR("Tube is empty");
_nPolygons = 0;
return;
}
else {
_nPolygons = nPolygons;
}
// Polygon needs at least 3 sides
// NOTE: assumes all polygons have the same number of points
const size_t nPoints = _data.front().points.size();
if (nPoints < 3) {
LERROR("Polygons need at least 3 edges");
_nPoints = 0;
return;
}
else {
_nPoints = nPoints;
}
_verticies.clear();
_indicies.clear();
if (_useSmoothNormals) {
createSmoothTube();
}
else {
createLowPolyTube();
}
}
void RenderableTube::createSmoothTube() {
// Verticies
int pointCounter = 0;
// Get the selected color parameter
int colorParamIndex = currentColorParameterIndex();
// Calciulate the normals for the top and bottom
glm::dvec3 bottomCenter = _data.front().center;
glm::dvec3 topCenter = _data.back().center;
glm::dvec3 bottomNormal = bottomCenter - topCenter;
glm::dvec3 topNormal = topCenter - bottomCenter;
// Add the bottom
if (_addEdges) {
addBottom(pointCounter, bottomCenter, bottomNormal, colorParamIndex);
}
// Add all the polygons that will create the sides of the tube
for (unsigned int polyIndex = 0; polyIndex < _nPolygons; ++polyIndex) {
for (unsigned int pointIndex = 0; pointIndex < _nPoints; ++pointIndex) {
bool isLast = polyIndex == _nPolygons - 1;
PolygonVertex sidePoint;
sidePoint.position[0] = _data[polyIndex].points[pointIndex].coordinate.x;
sidePoint.position[1] = _data[polyIndex].points[pointIndex].coordinate.y;
sidePoint.position[2] = _data[polyIndex].points[pointIndex].coordinate.z;
// Calculate normal
glm::dvec3 centerLine = isLast ?
_data[polyIndex - 1].center - _data[polyIndex].center :
_data[polyIndex].center - _data[polyIndex + 1].center;
glm::dvec3 normal = _data[polyIndex].points[pointIndex].coordinate -
glm::proj(_data[polyIndex].points[pointIndex].coordinate, centerLine) -
centerLine;
sidePoint.normal[0] = normal.x;
sidePoint.normal[1] = normal.y;
sidePoint.normal[2] = normal.z;
if (_hasColorMapFile) {
sidePoint.value = _colorDataset.entries[pointCounter++].data[colorParamIndex];
}
_verticies.push_back(sidePoint);
}
}
// Add the top
if (_addEdges) {
addTop(pointCounter - _nPoints, topCenter, topNormal, colorParamIndex);
}
// Indicies
unsigned int firstSideIndex = _addEdges ? _nPoints + 1 : 0;
// Add Indices for bottom
if (_addEdges) {
unsigned int bottomCenterIndex = 0;
for (unsigned int pointIndex = 0; pointIndex < _nPoints; ++pointIndex) {
unsigned int vIndex = pointIndex + 1;
bool isLast = pointIndex == _nPoints - 1;
unsigned int v0 = bottomCenterIndex;
unsigned int v1 = vIndex;
unsigned int v2 = isLast ? v0 + 1 : v1 + 1;
_indicies.push_back(v0);
_indicies.push_back(v1);
_indicies.push_back(v2);
}
}
// Indices for side triangles
for (unsigned int polyIndex = 0; polyIndex < _nPolygons - 1; ++polyIndex) {
for (unsigned int pointIndex = 0; pointIndex < _nPoints; ++pointIndex) {
unsigned int vIndex = firstSideIndex + pointIndex + polyIndex * _nPoints;
bool isLast = pointIndex == _nPoints - 1;
unsigned int v0 = vIndex;
unsigned int v1 = v0 + _nPoints;
unsigned int v2 = isLast ? v0 + 1 : v1 + 1;
unsigned int v3 = isLast ? v0 + 1 - _nPoints : v0 + 1;
// 2 triangles per sector
_indicies.push_back(v0);
_indicies.push_back(v1);
_indicies.push_back(v2);
_indicies.push_back(v0);
_indicies.push_back(v2);
_indicies.push_back(v3);
}
}
// Add Indices for top
if (_addEdges) {
unsigned int topCenterIndex = _verticies.size() - 1;
for (unsigned int pointIndex = 0; pointIndex < _nPoints; ++pointIndex) {
unsigned int vIndex = topCenterIndex - pointIndex - 1;
bool isLast = pointIndex == _nPoints - 1;
unsigned int v0 = topCenterIndex;
unsigned int v1 = vIndex;
unsigned int v2 = isLast ? v0 - 1 : v1 - 1;
_indicies.push_back(v0);
_indicies.push_back(v1);
_indicies.push_back(v2);
}
}
}
void RenderableTube::createLowPolyTube() {
// Verticies
int pointCounter = 0;
// Get the selected color parameter
int colorParamIndex = currentColorParameterIndex();
// Calciulate the normals for the top and bottom
glm::dvec3 bottomCenter = _data.front().center;
glm::dvec3 topCenter = _data.back().center;
glm::dvec3 bottomNormal = bottomCenter - topCenter;
glm::dvec3 topNormal = topCenter - bottomCenter;
// Add the bottom
if (_addEdges) {
addBottom(pointCounter, bottomCenter, bottomNormal, colorParamIndex);
}
// Add all the polygons that will create the sides of the tube
for (unsigned int polyIndex = 0; polyIndex < _nPolygons - 1; ++polyIndex) {
for (unsigned int pointIndex = 0; pointIndex < _nPoints; ++pointIndex) {
TimePolygon currentTimePolygon = _data[polyIndex];
TimePolygon nextTimePolygon = _data[polyIndex + 1];
bool isLast = pointIndex == _nPoints - 1;
// Identify all the points that are included in this section
TimePolygonPoint v0 = currentTimePolygon.points[pointIndex];
TimePolygonPoint v1 = nextTimePolygon.points[pointIndex];
TimePolygonPoint v2 = isLast ?
nextTimePolygon.points[pointIndex + 1 - _nPoints] :
nextTimePolygon.points[pointIndex + 1];
TimePolygonPoint v3 = isLast ?
currentTimePolygon.points[pointIndex + 1 - _nPoints] :
currentTimePolygon.points[pointIndex + 1];
// Calculate normal of this section of the tube
glm::dvec3 toNextPoly = glm::normalize(v1.coordinate - v0.coordinate);
glm::dvec3 toNextPoint = glm::normalize(v3.coordinate - v0.coordinate);
glm::dvec3 normal = glm::cross(toNextPoint, toNextPoly);
// Create the Verticies for all points in this section
PolygonVertex sidePointTriangleV0, sidePointTriangleV1, sidePointTriangleV2,
sidePointTriangleV3;
// Position
sidePointTriangleV0.position[0] = v0.coordinate.x;
sidePointTriangleV0.position[1] = v0.coordinate.y;
sidePointTriangleV0.position[2] = v0.coordinate.z;
sidePointTriangleV1.position[0] = v1.coordinate.x;
sidePointTriangleV1.position[1] = v1.coordinate.y;
sidePointTriangleV1.position[2] = v1.coordinate.z;
sidePointTriangleV2.position[0] = v2.coordinate.x;
sidePointTriangleV2.position[1] = v2.coordinate.y;
sidePointTriangleV2.position[2] = v2.coordinate.z;
sidePointTriangleV3.position[0] = v3.coordinate.x;
sidePointTriangleV3.position[1] = v3.coordinate.y;
sidePointTriangleV3.position[2] = v3.coordinate.z;
if (_hasColorMapFile) {
// Value
sidePointTriangleV0.value =
_colorDataset.entries[pointCounter].data[colorParamIndex];
sidePointTriangleV1.value =
_colorDataset.entries[pointCounter + _nPoints].data[colorParamIndex];
sidePointTriangleV2.value =
_colorDataset.entries[isLast ? pointCounter + 1 : pointCounter + _nPoints + 1].data[colorParamIndex];
sidePointTriangleV3.value =
_colorDataset.entries[isLast ? pointCounter + 1 - _nPoints : pointCounter + 1].data[colorParamIndex];
++pointCounter;
}
// Normal
sidePointTriangleV0.normal[0] = normal.x;
sidePointTriangleV0.normal[1] = normal.y;
sidePointTriangleV0.normal[2] = normal.z;
sidePointTriangleV1.normal[0] = normal.x;
sidePointTriangleV1.normal[1] = normal.y;
sidePointTriangleV1.normal[2] = normal.z;
sidePointTriangleV2.normal[0] = normal.x;
sidePointTriangleV2.normal[1] = normal.y;
sidePointTriangleV2.normal[2] = normal.z;
sidePointTriangleV3.normal[0] = normal.x;
sidePointTriangleV3.normal[1] = normal.y;
sidePointTriangleV3.normal[2] = normal.z;
// Add all points to the list
_verticies.push_back(sidePointTriangleV0);
_verticies.push_back(sidePointTriangleV1);
_verticies.push_back(sidePointTriangleV2);
_verticies.push_back(sidePointTriangleV3);
}
}
// Add the top
if (_addEdges) {
addTop(pointCounter, topCenter, topNormal, colorParamIndex);
}
// Indicies
unsigned int nPointsPerSection = 4;
unsigned int vIndex = _addEdges ? _nPoints + 1 : 0;
// Add Indices for bottom
if (_addEdges) {
unsigned int bottomCenterIndex = 0;
for (unsigned int pointIndex = 0; pointIndex < _nPoints; ++pointIndex) {
unsigned int vIndex = pointIndex + 1;
bool isLast = pointIndex == _nPoints - 1;
unsigned int v0 = bottomCenterIndex;
unsigned int v1 = vIndex;
unsigned int v2 = isLast ? v0 + 1 : vIndex + 1;
_indicies.push_back(v0);
_indicies.push_back(v1);
_indicies.push_back(v2);
}
}
// Indices for side triangles
for (unsigned int polyIndex = 0; polyIndex < _nPolygons - 1; ++polyIndex) {
for (unsigned int pointIndex = 0; pointIndex < _nPoints; ++pointIndex) {
bool isLast = pointIndex == _nPoints - 1;
unsigned int v0 = vIndex;
unsigned int v1 = v0 + 1;
unsigned int v2 = v1 + 1;
unsigned int v3 = v2 + 1;
// 2 triangles per sector
_indicies.push_back(v0);
_indicies.push_back(v1);
_indicies.push_back(v2);
_indicies.push_back(v0);
_indicies.push_back(v2);
_indicies.push_back(v3);
vIndex += nPointsPerSection;
}
}
// Add Indices for top
if (_addEdges) {
unsigned int topCenterIndex = _verticies.size() - 1;
for (unsigned int pointIndex = 0; pointIndex < _nPoints; ++pointIndex) {
unsigned int vIndex = topCenterIndex - pointIndex - 1;
bool isLast = pointIndex == _nPoints - 1;
unsigned int v0 = topCenterIndex;
unsigned int v1 = vIndex;
unsigned int v2 = isLast ? v0 - 1 : vIndex - 1;
_indicies.push_back(v0);
_indicies.push_back(v1);
_indicies.push_back(v2);
}
}
}
void RenderableTube::addBottom(int pointCounter, const glm::dvec3& bottomCenter,
const glm::dvec3& bottomNormal, int colorParamIndex)
{
// Calculate the transfer function value for the center point of the bottom
// Get the color for selected color parameter
float bottomCenterValue = 0.f;
if (_hasColorMapFile) {
int loopPointCounter = pointCounter;
for (size_t pointIndex = 0; pointIndex < _data.front().points.size(); ++pointIndex) {
bottomCenterValue += _colorDataset.entries[loopPointCounter++].data[colorParamIndex];
}
bottomCenterValue /= _nPoints;
}
// Add the bottom's center point
PolygonVertex bottomCenterPoint;
bottomCenterPoint.position[0] = bottomCenter.x;
bottomCenterPoint.position[1] = bottomCenter.y;
bottomCenterPoint.position[2] = bottomCenter.z;
bottomCenterPoint.normal[0] = bottomNormal.x;
bottomCenterPoint.normal[1] = bottomNormal.y;
bottomCenterPoint.normal[2] = bottomNormal.z;
if (_hasColorMapFile) {
bottomCenterPoint.value = bottomCenterValue;
}
_verticies.push_back(bottomCenterPoint);
// Add the bottom's sides with proper normals
// This will ensure a hard shadow on the tube edge
for (size_t pointIndex = 0; pointIndex < _data.front().points.size(); ++pointIndex) {
PolygonVertex bottomSidePoint;
bottomSidePoint.position[0] = _data.front().points[pointIndex].coordinate.x;
bottomSidePoint.position[1] = _data.front().points[pointIndex].coordinate.y;
bottomSidePoint.position[2] = _data.front().points[pointIndex].coordinate.z;
bottomSidePoint.normal[0] = bottomNormal.x;
bottomSidePoint.normal[1] = bottomNormal.y;
bottomSidePoint.normal[2] = bottomNormal.z;
if (_hasColorMapFile) {
bottomSidePoint.value = _colorDataset.entries[pointCounter++].data[colorParamIndex];
}
_verticies.push_back(bottomSidePoint);
}
}
void RenderableTube::addTop(int pointCounter, const glm::dvec3& topCenter,
const glm::dvec3& topNormal, int colorParamIndex)
{
// Calculate the transfer function value for the center point of the top
// Get the color for selected color parameter
float topCenterValue = 0.f;
if (_hasColorMapFile) {
int loopPointCounter = pointCounter;
for (const TimePolygonPoint& timePolygonPoint : _data.back().points) {
topCenterValue += _colorDataset.entries[loopPointCounter++].data[colorParamIndex];
}
topCenterValue /= _nPoints;
}
// Add the top's sides with proper normals
// This will ensure a hard shadow on the tube edge
for (const TimePolygonPoint& timePolygonPoint : _data.back().points) {
PolygonVertex topSidePoint;
topSidePoint.position[0] = timePolygonPoint.coordinate.x;
topSidePoint.position[1] = timePolygonPoint.coordinate.y;
topSidePoint.position[2] = timePolygonPoint.coordinate.z;
topSidePoint.normal[0] = topNormal.x;
topSidePoint.normal[1] = topNormal.y;
topSidePoint.normal[2] = topNormal.z;
if (_hasColorMapFile) {
topSidePoint.value = _colorDataset.entries[pointCounter++].data[colorParamIndex];
}
_verticies.push_back(topSidePoint);
}
// Add the top's center point
PolygonVertex topCenterPoint;
topCenterPoint.position[0] = topCenter.x;
topCenterPoint.position[1] = topCenter.y;
topCenterPoint.position[2] = topCenter.z;
topCenterPoint.normal[0] = topNormal.x;
topCenterPoint.normal[1] = topNormal.y;
topCenterPoint.normal[2] = topNormal.z;
if (_hasColorMapFile) {
topCenterPoint.value = topCenterValue;
}
_verticies.push_back(topCenterPoint);
}
void RenderableTube::createSmoothEnding(double now) {
// Get the selected color parameter
int colorParamIndex = currentColorParameterIndex();
// Verticies
// Add the points of the polygon before now
size_t polyIndex = _lastPolygonBeforeNow;
for (unsigned int pointIndex = 0; pointIndex < _nPoints; ++pointIndex) {
PolygonVertex sidePoint;
glm::dvec3 sidePointPos = _data[polyIndex].points[pointIndex].coordinate;
sidePoint.position[0] = sidePointPos.x;
sidePoint.position[1] = sidePointPos.y;
sidePoint.position[2] = sidePointPos.z;
// Calculate normal
glm::dvec3 centerLine = _data[polyIndex].center - _data[polyIndex + 1].center;
glm::dvec3 normal = _data[polyIndex].points[pointIndex].coordinate -
glm::proj(_data[polyIndex].points[pointIndex].coordinate, centerLine) -
centerLine;
sidePoint.normal[0] = normal.x;
sidePoint.normal[1] = normal.y;
sidePoint.normal[2] = normal.z;
if (_hasColorMapFile) {
sidePoint.value =
_colorDataset.entries[polyIndex * _nPoints + pointIndex].data[colorParamIndex];
}
_verticiesEnding.push_back(sidePoint);
}
// Interpolate to find the values for the current polygon
double prevTime = _data[_lastPolygonBeforeNow].timestamp;
double nextTime = _data[_firstPolygonAfterNow].timestamp;
double t = (now - prevTime) / (nextTime - prevTime);
// Add the points for the current polygon
polyIndex = _firstPolygonAfterNow;
for (unsigned int pointIndex = 0; pointIndex < _nPoints; ++pointIndex) {
bool isLast = polyIndex == _nPolygons - 1;
glm::dvec3 prevPolyPointPos = _data[_lastPolygonBeforeNow].points[pointIndex].coordinate;
glm::dvec3 nextPolyPointPos = _data[_firstPolygonAfterNow].points[pointIndex].coordinate;
glm::dvec3 currPolyPointPos = t * nextPolyPointPos + (1.0 - t) * prevPolyPointPos;
PolygonVertex sidePoint;
sidePoint.position[0] = currPolyPointPos.x;
sidePoint.position[1] = currPolyPointPos.y;
sidePoint.position[2] = currPolyPointPos.z;
// Calculate normal
glm::dvec3 centerLine = isLast ?
_data[polyIndex - 1].center - _data[polyIndex].center :
_data[polyIndex].center - _data[polyIndex + 1].center;
glm::dvec3 normal = _data[polyIndex].points[pointIndex].coordinate -
glm::proj(_data[polyIndex].points[pointIndex].coordinate, centerLine) -
centerLine;
sidePoint.normal[0] = normal.x;
sidePoint.normal[1] = normal.y;
sidePoint.normal[2] = normal.z;
if (_hasColorMapFile) {
float prevPolyPointValue =
_colorDataset.entries[polyIndex * _nPoints + pointIndex - 1].data[colorParamIndex];
float currPolyPointValue =
_colorDataset.entries[polyIndex * _nPoints + pointIndex].data[colorParamIndex];
currPolyPointValue = t * currPolyPointValue + (1.0 - t) * prevPolyPointValue;
sidePoint.value = currPolyPointValue;
}
_verticiesEnding.push_back(sidePoint);
}
// Add the cutplane for the current polygon
// Indicies
for (unsigned int pointIndex = 0; pointIndex < _nPoints; ++pointIndex) {
bool isLast = pointIndex == _nPoints - 1;
unsigned int v0 = pointIndex;
unsigned int v1 = v0 + _nPoints;
unsigned int v2 = isLast ? v0 + 1 : v1 + 1;
unsigned int v3 = isLast ? v0 + 1 - _nPoints : v0 + 1;
// 2 triangles per sector
_indiciesEnding.push_back(v0);
_indiciesEnding.push_back(v1);
_indiciesEnding.push_back(v2);
_indiciesEnding.push_back(v0);
_indiciesEnding.push_back(v2);
_indiciesEnding.push_back(v3);
}
}
void RenderableTube::createLowPolyEnding(double now) {
// Get the selected color parameter
int colorParamIndex = currentColorParameterIndex();
// Interpolate to find current data
double prevTime = _data[_lastPolygonBeforeNow].timestamp;
double nextTime = _data[_firstPolygonAfterNow].timestamp;
double t = (now - prevTime) / (nextTime - prevTime);
// Verticies
// Add the points of the polygon before now
for (unsigned int pointIndex = 0; pointIndex < _nPoints; ++pointIndex) {
bool isLast = pointIndex == _nPoints - 1;
TimePolygon prevTimePolygon = _data[_lastPolygonBeforeNow];
TimePolygon nextTimePolygon = _data[_firstPolygonAfterNow];
// Identify all the points that are included in this section
glm::dvec3 v0 = prevTimePolygon.points[pointIndex].coordinate;
glm::dvec3 v1 = nextTimePolygon.points[pointIndex].coordinate;
glm::dvec3 v2 = isLast ?
nextTimePolygon.points[pointIndex + 1 - _nPoints].coordinate :
nextTimePolygon.points[pointIndex + 1].coordinate;
glm::dvec3 v3 = isLast ?
prevTimePolygon.points[pointIndex + 1 - _nPoints].coordinate :
prevTimePolygon.points[pointIndex + 1].coordinate;
// Interpolate the points related to the next polygon
v1 = t * v1 + (1.0 - t) * v0;
v2 = t * v2 + (1.0 - t) * v3;
// Calculate normal of this section of the tube
glm::dvec3 toNextPoly = glm::normalize(v1 - v0);
glm::dvec3 toNextPoint = glm::normalize(v3 - v0);
glm::dvec3 normal = glm::cross(toNextPoint, toNextPoly);
// Create the Verticies for all points in this section
PolygonVertex sidePointTriangleV0, sidePointTriangleV1, sidePointTriangleV2,
sidePointTriangleV3;
// Position
sidePointTriangleV0.position[0] = v0.x;
sidePointTriangleV0.position[1] = v0.y;
sidePointTriangleV0.position[2] = v0.z;
sidePointTriangleV1.position[0] = v1.x;
sidePointTriangleV1.position[1] = v1.y;
sidePointTriangleV1.position[2] = v1.z;
sidePointTriangleV2.position[0] = v2.x;
sidePointTriangleV2.position[1] = v2.y;
sidePointTriangleV2.position[2] = v2.z;
sidePointTriangleV3.position[0] = v3.x;
sidePointTriangleV3.position[1] = v3.y;
sidePointTriangleV3.position[2] = v3.z;
if (_hasColorMapFile) {
// Value
unsigned int pointCounter = _lastPolygonBeforeNow * _nPoints + pointIndex;
sidePointTriangleV0.value =
_colorDataset.entries[pointCounter].data[colorParamIndex];
sidePointTriangleV1.value =
_colorDataset.entries[pointCounter + _nPoints].data[colorParamIndex];
sidePointTriangleV2.value =
_colorDataset.entries[isLast ? pointCounter + 1 : pointCounter + _nPoints + 1].data[colorParamIndex];
sidePointTriangleV3.value =
_colorDataset.entries[isLast ? pointCounter + 1 - _nPoints : pointCounter + 1].data[colorParamIndex];
sidePointTriangleV1.value =
t * sidePointTriangleV1.value + (1.0 - t) * sidePointTriangleV0.value;
sidePointTriangleV2.value =
t * sidePointTriangleV2.value + (1.0 - t) * sidePointTriangleV3.value;
}
// Normal
sidePointTriangleV0.normal[0] = normal.x;
sidePointTriangleV0.normal[1] = normal.y;
sidePointTriangleV0.normal[2] = normal.z;
sidePointTriangleV1.normal[0] = normal.x;
sidePointTriangleV1.normal[1] = normal.y;
sidePointTriangleV1.normal[2] = normal.z;
sidePointTriangleV2.normal[0] = normal.x;
sidePointTriangleV2.normal[1] = normal.y;
sidePointTriangleV2.normal[2] = normal.z;
sidePointTriangleV3.normal[0] = normal.x;
sidePointTriangleV3.normal[1] = normal.y;
sidePointTriangleV3.normal[2] = normal.z;
// Add all points to the list
_verticiesEnding.push_back(sidePointTriangleV0);
_verticiesEnding.push_back(sidePointTriangleV1);
_verticiesEnding.push_back(sidePointTriangleV2);
_verticiesEnding.push_back(sidePointTriangleV3);
}
// Indicies
unsigned int nPointsPerSection = 4;
unsigned int vIndex = 0;
for (unsigned int pointIndex = 0; pointIndex < _nPoints; ++pointIndex) {
bool isLast = pointIndex == _nPoints - 1;
unsigned int v0 = vIndex;
unsigned int v1 = v0 + 1;
unsigned int v2 = v1 + 1;
unsigned int v3 = v2 + 1;
// 2 triangles per sector
_indiciesEnding.push_back(v0);
_indiciesEnding.push_back(v1);
_indiciesEnding.push_back(v2);
_indiciesEnding.push_back(v0);
_indiciesEnding.push_back(v2);
_indiciesEnding.push_back(v3);
vIndex += nPointsPerSection;
}
}
void RenderableTube::render(const RenderData& data, RendererTasks&) {
if (_nIndiciesToRender == 0) {
return;
}
_shader->activate();
// Model transform and view transform needs to be in double precision
const glm::dmat4 modelViewTransform = calcModelViewTransform(data);
glm::dmat4 normalTransform = glm::transpose(glm::inverse(modelViewTransform));
// Uniforms
_shader->setUniform(_uniformCache.opacity, opacity());
_shader->setUniform(_uniformCache.modelViewTransform, modelViewTransform);
_shader->setUniform(
_uniformCache.projectionTransform,
glm::dmat4(data.camera.projectionMatrix())
);
_shader->setUniform(_uniformCache.normalTransform, glm::mat3(normalTransform));
// Settings
if (!_enableFaceCulling) {
glDisable(GL_CULL_FACE);
}
if (_drawWireframe) {
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
#ifndef __APPLE__
glLineWidth(_wireLineWidth);
#else
glLineWidth(1.f);
#endif
}
// Shading and light settings
int nLightSources = 0;
_lightIntensitiesBuffer.resize(_lightSources.size());
_lightDirectionsViewSpaceBuffer.resize(_lightSources.size());
for (const std::unique_ptr<LightSource>& lightSource : _lightSources) {
if (!lightSource->isEnabled()) {
continue;
}
_lightIntensitiesBuffer[nLightSources] = lightSource->intensity();
_lightDirectionsViewSpaceBuffer[nLightSources] =
lightSource->directionViewSpace(data);
++nLightSources;
}
if (_uniformCache.performShading != -1) {
_shader->setUniform(_uniformCache.performShading, _shading.enabled);
}
if (_shading.enabled) {
_shader->setUniform(_uniformCache.nLightSources, nLightSources);
_shader->setUniform(_uniformCache.lightIntensities, _lightIntensitiesBuffer);
_shader->setUniform(
_uniformCache.lightDirectionsViewSpace,
_lightDirectionsViewSpaceBuffer
);
_shader->setUniform(_uniformCache.ambientIntensity, _shading.ambientIntensity);
_shader->setUniform(_uniformCache.diffuseIntensity, _shading.diffuseIntensity);
_shader->setUniform(_uniformCache.specularIntensity, _shading.specularIntensity);
}
// Colormap settings
bool useColorMap = _hasColorMapFile && _colorSettings.colorMapping->enabled &&
_colorSettings.colorMapping->texture();
_shader->setUniform(_uniformCache.useColorMap, useColorMap);
_shader->setUniform(_uniformCache.color, _colorSettings.tubeColor);
ghoul::opengl::TextureUnit colorMapTextureUnit;
_shader->setUniform(_uniformCache.colorMapTexture, colorMapTextureUnit);
if (useColorMap) {
colorMapTextureUnit.activate();
_colorSettings.colorMapping->texture()->bind();
const glm::vec2 range = _colorSettings.colorMapping->valueRange;
_shader->setUniform(_uniformCache.cmapRangeMin, range.x);
_shader->setUniform(_uniformCache.cmapRangeMax, range.y);
_shader->setUniform(
_uniformCache.hideOutsideRange,
_colorSettings.colorMapping->hideOutsideRange
);
_shader->setUniform(
_uniformCache.nanColor,
_colorSettings.colorMapping->nanColor
);
_shader->setUniform(
_uniformCache.useNanColor,
_colorSettings.colorMapping->useNanColor
);
_shader->setUniform(
_uniformCache.aboveRangeColor,
_colorSettings.colorMapping->aboveRangeColor
);
_shader->setUniform(
_uniformCache.useAboveRangeColor,
_colorSettings.colorMapping->useAboveRangeColor
);
_shader->setUniform(
_uniformCache.belowRangeColor,
_colorSettings.colorMapping->belowRangeColor
);
_shader->setUniform(
_uniformCache.useBelowRangeColor,
_colorSettings.colorMapping->useBelowRangeColor
);
}
// Render
glBindVertexArray(_vaoId);
glDrawElements(
GL_TRIANGLES,
static_cast<GLsizei>(_nIndiciesToRender),
GL_UNSIGNED_INT,
nullptr
);
// Render the last section until now with interpolation
if (_interpolationNeeded && !_showAllTube) {
glBindVertexArray(_vaoIdEnding);
glDrawElements(
GL_TRIANGLES,
static_cast<GLsizei>(_indiciesEnding.size()),
GL_UNSIGNED_INT,
nullptr
);
}
// Reset
if (!_enableFaceCulling) {
glEnable(GL_CULL_FACE);
}
if (_drawWireframe) {
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
global::renderEngine->openglStateCache().resetLineState();
}
glBindVertexArray(0);
global::renderEngine->openglStateCache().resetLineState();
_shader->deactivate();
}
void RenderableTube::updateBufferData() {
glBindVertexArray(_vaoId);
glBindBuffer(GL_ARRAY_BUFFER, _vaoId);
glBufferData(
GL_ARRAY_BUFFER,
_verticies.size() * sizeof(PolygonVertex),
_verticies.data(),
GL_STREAM_DRAW
);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _iboId);
glBufferData(
GL_ELEMENT_ARRAY_BUFFER,
_indicies.size() * sizeof(unsigned int),
_indicies.data(),
GL_STREAM_DRAW
);
}
void RenderableTube::update(const UpdateData& data) {
if (_shader->isDirty()) {
_shader->rebuildFromFile();
ghoul::opengl::updateUniformLocations(*_shader, _uniformCache, UniformNames);
}
if (_tubeIsDirty) {
updateTube();
updateBufferData();
//setBoundingSphere(_length * glm::compMax(data.modelTransform.scale));
_tubeIsDirty = false;
}
if (_showAllTube) {
_nIndiciesToRender = _indicies.size();
return;
}
const double now = data.time.j2000Seconds();
double prev = 0.0;
double next = std::numeric_limits<double>::max();
_lastPolygonBeforeNow = 0;
_firstPolygonAfterNow = std::numeric_limits<size_t>::max();
bool hasPrev = false;
_interpolationNeeded = true;
for (size_t i = 0; i < _data.size(); ++i) {
// Found a time smaller than now
if (_data[i].timestamp < now) {
prev = _data[i].timestamp;
_lastPolygonBeforeNow = i;
hasPrev = true;
}
// Found a time larger than now
else if (_data[i].timestamp > now && _data[i].timestamp < next) {
next = _data[i].timestamp;
_firstPolygonAfterNow = i;
}
// Found a time exactly equal to now
else if (std::abs(_data[i].timestamp - now) <
std::numeric_limits<double>::epsilon())
{
prev = _data[i].timestamp;
_lastPolygonBeforeNow = i;
hasPrev = true;
_interpolationNeeded = false;
LDEBUG(fmt::format("Polygon nr: '{}' is exactly at NOW",
_lastPolygonBeforeNow)
);
}
}
// How many points are to and including polygon _lastPolygonBeforeNow?
const size_t nPolygons = _data.size();
const size_t nPoints = _data.front().points.size();
int nPointsUntilNow = 0;
// Where on the tube are we located in time
if (!hasPrev) {
// Before the time of the tube, do not show anything
nPointsUntilNow = 0;
_interpolationNeeded = false;
LDEBUG("Before");
}
else if (_lastPolygonBeforeNow == nPolygons - 1) {
// The previous step before now is the last polygon,
// either after the time of the full tube or just at the exact end of it,
// either way, show all of the tube
nPointsUntilNow = _indicies.size();
_interpolationNeeded = false;
LDEBUG("After or End");
}
else {
// Somewhere in the middle of the tube
// could also be the very first polygon, _lastPolygonBeforeNow == 0
// First add the bottom if that property is turned on
if (_addEdges) {
// Show at least the bottom
nPointsUntilNow += static_cast<int>(nPoints * 3);
}
// Show the sides until _lastPolygonBeforeNow
nPointsUntilNow += static_cast<int>(_lastPolygonBeforeNow * nPoints * 6);
// We need at least one full side to show if we do not show the edges
if (!_addEdges && _lastPolygonBeforeNow == 0) {
LDEBUG("Nothing to show except edges");
nPointsUntilNow = 0;
}
}
LDEBUG(fmt::format("\nprev: '{}'\nnext: '{}'\nnPointsUntilNow: '{}'\n",
_lastPolygonBeforeNow, _firstPolygonAfterNow, nPointsUntilNow)
);
if (nPointsUntilNow > _indicies.size()) {
LERROR("Cannot render more verticies than what is in the tube");
_nIndiciesToRender = 0;
}
else {
_nIndiciesToRender = nPointsUntilNow;
}
// Update the ending of the tube
if (_interpolationNeeded) {
_verticiesEnding.clear();
_indiciesEnding.clear();
// Create the last piece of the tube
if (_useSmoothNormals) {
createSmoothEnding(now);
}
else {
createLowPolyEnding(now);
}
// Update the buffer for the last piece
glBindVertexArray(_vaoIdEnding);
glBindBuffer(GL_ARRAY_BUFFER, _vboIdEnding);
glBufferData(
GL_ARRAY_BUFFER,
_verticiesEnding.size() * sizeof(PolygonVertex),
_verticiesEnding.data(),
GL_STREAM_DRAW
);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _iboIdEnding);
glBufferData(
GL_ELEMENT_ARRAY_BUFFER,
_indiciesEnding.size() * sizeof(unsigned int),
_indiciesEnding.data(),
GL_STREAM_DRAW
);
}
glBindVertexArray(0);
}
} // namespace openspace