Files
OpenSpace/modules/globebrowsing/src/rawtiledatareader.cpp
Alexander Bock d7d279ea16 Happy new year
2022-01-01 12:32:55 +01:00

1003 lines
39 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2022 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/globebrowsing/src/rawtiledatareader.h>
#include <modules/globebrowsing/globebrowsingmodule.h>
#include <modules/globebrowsing/src/geodeticpatch.h>
#include <openspace/engine/globals.h>
#include <openspace/engine/moduleengine.h>
#include <ghoul/fmt.h>
#include <ghoul/filesystem/file.h>
#include <ghoul/filesystem/filesystem.h>
#include <ghoul/logging/logmanager.h>
#include <ghoul/misc/exception.h>
#include <ghoul/misc/profiling.h>
#include <filesystem>
#ifdef _MSC_VER
#pragma warning (push)
// CPL throws warning about missing DLL interface
#pragma warning (disable : 4251)
#endif // _MSC_VER
#include <ogr_featurestyle.h>
#include <ogr_spatialref.h>
#include <cpl_virtualmem.h>
#include <gdal_priv.h>
#ifdef _MSC_VER
#pragma warning (pop)
#endif // _MSC_VER
#include <algorithm>
#include <fstream>
namespace openspace::globebrowsing {
namespace {
// These are some locations in memory taken from ESRI's No Data Available tile so that we
// can spotcheck these tiles and not present them
// The pair is <byte index, expected value>
struct MemoryLocation {
int offset;
std::byte value;
};
// The memory locations are grouped to be mostly cache-aligned
constexpr std::array<MemoryLocation, 42> NoDataAvailableData = {
MemoryLocation{ 296380, std::byte(205) },
MemoryLocation{ 296381, std::byte(205) },
MemoryLocation{ 296382, std::byte(205) },
MemoryLocation{ 296383, std::byte(255) },
MemoryLocation{ 296384, std::byte(224) },
MemoryLocation{ 296385, std::byte(224) },
MemoryLocation{ 296386, std::byte(224) },
MemoryLocation{ 296387, std::byte(255) },
MemoryLocation{ 296388, std::byte(244) },
MemoryLocation{ 296389, std::byte(244) },
MemoryLocation{ 296390, std::byte(244) },
MemoryLocation{ 296391, std::byte(255) },
MemoryLocation{ 269840, std::byte(209) },
MemoryLocation{ 269841, std::byte(209) },
MemoryLocation{ 269842, std::byte(209) },
MemoryLocation{ 269844, std::byte(203) },
MemoryLocation{ 269845, std::byte(203) },
MemoryLocation{ 269846, std::byte(203) },
MemoryLocation{ 269852, std::byte(221) },
MemoryLocation{ 269853, std::byte(221) },
MemoryLocation{ 269854, std::byte(221) },
MemoryLocation{ 269856, std::byte(225) },
MemoryLocation{ 269857, std::byte(225) },
MemoryLocation{ 269858, std::byte(225) },
MemoryLocation{ 269860, std::byte(218) },
MemoryLocation{ 269861, std::byte(218) },
MemoryLocation{ 240349, std::byte(203) },
MemoryLocation{ 240350, std::byte(203) },
MemoryLocation{ 240352, std::byte(205) },
MemoryLocation{ 240353, std::byte(204) },
MemoryLocation{ 240354, std::byte(205) },
MemoryLocation{ 0, std::byte(204) },
MemoryLocation{ 7, std::byte(255) },
MemoryLocation{ 520, std::byte(204) },
MemoryLocation{ 880, std::byte(204) },
MemoryLocation{ 883, std::byte(255) },
MemoryLocation{ 91686, std::byte(204) },
MemoryLocation{ 372486, std::byte(204) },
MemoryLocation{ 670483, std::byte(255) },
MemoryLocation{ 231684, std::byte(202) },
MemoryLocation{ 232092, std::byte(202) },
MemoryLocation{ 235921, std::byte(203) },
};
enum class Side {
Left = 0,
Top,
Right,
Bottom
};
float interpretFloat(GLenum glType, const std::byte* src) {
switch (glType) {
case GL_UNSIGNED_BYTE:
return static_cast<float>(*reinterpret_cast<const GLubyte*>(src));
case GL_UNSIGNED_SHORT:
return static_cast<float>(*reinterpret_cast<const GLushort*>(src));
case GL_SHORT:
return static_cast<float>(*reinterpret_cast<const GLshort*>(src));
case GL_UNSIGNED_INT:
return static_cast<float>(*reinterpret_cast<const GLuint*>(src));
case GL_INT:
return static_cast<float>(*reinterpret_cast<const GLint*>(src));
case GL_HALF_FLOAT:
return static_cast<float>(*reinterpret_cast<const GLhalf*>(src));
case GL_FLOAT:
return static_cast<float>(*reinterpret_cast<const GLfloat*>(src));
case GL_DOUBLE:
return static_cast<float>(*reinterpret_cast<const GLdouble*>(src));
default:
ghoul_assert(false, "Unknown data type");
throw ghoul::MissingCaseException();
}
}
GDALDataType toGDALDataType(GLenum glType) {
switch (glType) {
case GL_UNSIGNED_BYTE:
return GDT_Byte;
case GL_UNSIGNED_SHORT:
return GDT_UInt16;
case GL_SHORT:
return GDT_Int16;
case GL_UNSIGNED_INT:
return GDT_UInt32;
case GL_INT:
return GDT_Int32;
case GL_FLOAT:
return GDT_Float32;
case GL_DOUBLE:
return GDT_Float64;
default:
LERRORC("GDALRawTileDataReader", fmt::format(
"OpenGL data type unknown to GDAL: {}", static_cast<int>(glType)
));
throw ghoul::MissingCaseException();
}
}
/**
* Use as a helper function when determining the maximum tile level. This function
* returns the negated number of overviews requred to downscale the highest overview
* dataset so that it fits within minimumPixelSize pixels in the x-dimension.
*/
int calculateTileLevelDifference(GDALDataset* dataset, int minimumPixelSize) {
GDALRasterBand* firstBand = dataset->GetRasterBand(1);
GDALRasterBand* maxOverview;
int numOverviews = firstBand->GetOverviewCount();
if (numOverviews <= 0) { // No overviews. Use first band.
maxOverview = firstBand;
}
else { // Pick the highest overview.
maxOverview = firstBand->GetOverview(numOverviews - 1);
}
const int sizeLevel0 = maxOverview->GetXSize();
const double diff = log2(minimumPixelSize) - log2(sizeLevel0);
const double intdiff = diff >= 0 ? ceil(diff) : floor(diff);
return static_cast<int>(intdiff);
}
/**
* Aligns one the sides of the pixel regino to the specified position. This does
* not change the number of pixels within the region.
*
* Example: Side = left and pos = 16:
* start.x = 16 and keep the size the same
*/
void alignPixelRegion(PixelRegion& pixelRegion, Side side, int pos) {
switch (side) {
case Side::Left:
pixelRegion.start.x = pos;
break;
case Side::Top:
pixelRegion.start.y = pos;
break;
case Side::Right:
pixelRegion.start.x = pos - pixelRegion.numPixels.x;
break;
case Side::Bottom:
pixelRegion.start.y = pos - pixelRegion.numPixels.y;
break;
}
}
PixelRegion globalCut(PixelRegion& pixelRegion, Side side, int p) {
const bool lineIntersect = [pr = pixelRegion, side, p]() {
switch (side) {
case Side::Left:
case Side::Right:
return pr.start.x <= p && p <= (pr.start.x + pr.numPixels.x);
case Side::Top:
case Side::Bottom:
return pr.start.y <= p && p <= (pr.start.y + pr.numPixels.y);
default:
throw ghoul::MissingCaseException();
}
}();
if (!lineIntersect) {
return PixelRegion();
}
auto setSide = [](PixelRegion& pr, Side s, int pos) {
switch (s) {
case Side::Left:
pr.numPixels.x += (pr.start.x - pos);
pr.start.x = pos;
break;
case Side::Top:
pr.numPixels.y += (pr.start.y - pos);
pr.start.y = pos;
break;
case Side::Right:
pr.numPixels.x = pos - pr.start.x;
break;
case Side::Bottom:
pr.numPixels.y = pos - pr.start.y;
break;
}
};
PixelRegion cutOff(pixelRegion);
int cutSize = 0;
switch (side) {
case Side::Left:
setSide(pixelRegion, Side::Left, p);
setSide(cutOff, Side::Right, p - cutSize);
break;
case Side::Top:
setSide(pixelRegion, Side::Top, p);
setSide(cutOff, Side::Bottom, p - cutSize);
break;
case Side::Right:
setSide(pixelRegion, Side::Right, p);
setSide(cutOff, Side::Left, p + cutSize);
break;
case Side::Bottom:
setSide(pixelRegion, Side::Bottom, p);
setSide(cutOff, Side::Top, p + cutSize);
break;
}
return cutOff;
}
int edge(const PixelRegion& pixelRegion, Side side) {
switch (side) {
case Side::Left: return pixelRegion.start.x;
case Side::Top: return pixelRegion.start.y;
case Side::Right: return pixelRegion.start.x + pixelRegion.numPixels.x;
case Side::Bottom: return pixelRegion.start.y + pixelRegion.numPixels.y;
default: throw ghoul::MissingCaseException();
}
}
PixelRegion localCut(PixelRegion& pr, Side side, int localPos) {
if (localPos < 1) {
return PixelRegion();
}
else {
const int edgeDirectionSign = (side < Side::Right) ? -1 : 1;
return globalCut(pr, side, edge(pr, side) - edgeDirectionSign * localPos);
}
}
bool isInside(const PixelRegion& lhs, const PixelRegion& rhs) {
glm::ivec2 e = lhs.start + lhs.numPixels;
glm::ivec2 re = rhs.start + rhs.numPixels;
return rhs.start.x <= lhs.start.x && e.x <= re.x &&
rhs.start.y <= lhs.start.y && e.y <= re.y;
}
IODescription cutIODescription(IODescription& io, Side side, int pos) {
glm::dvec2 ratio = {
io.write.region.numPixels.x / static_cast<double>(io.read.region.numPixels.x),
io.write.region.numPixels.y / static_cast<double>(io.read.region.numPixels.y)
};
IODescription whatCameOff = io;
whatCameOff.read.region = globalCut(io.read.region, side, pos);
glm::ivec2 cutSize = whatCameOff.read.region.numPixels;
glm::ivec2 localWriteCutSize = ratio * glm::dvec2(cutSize);
int localWriteCutPos =
(side == Side::Left || side == Side::Right) ?
localWriteCutSize.x :
localWriteCutSize.y;
whatCameOff.write.region = localCut(io.write.region, side, localWriteCutPos);
return whatCameOff;
}
/**
* Returns the geo transform from raster space to projection coordinates as defined
* by GDAL.
*/
std::array<double, 6> geoTransform(int rasterX, int rasterY) {
GeodeticPatch cov(
Geodetic2{ 0.0, 0.0 },
Geodetic2{ glm::half_pi<double>(), glm::pi<double>() }
);
return {
glm::degrees(cov.corner(Quad::NORTH_WEST).lon),
glm::degrees(cov.size().lon) / rasterX,
0.0,
glm::degrees(cov.corner(Quad::NORTH_WEST).lat),
0.0,
glm::degrees(-cov.size().lat) / rasterY
};
}
/**
* Get the pixel corresponding to a specific position on the globe defined by the
* Geodetic2 coordinate \p geo. If the dataset has overviews the function returns the
* pixel at the lowest overview (highest resolution).
*
* \param geo The position on the globe to convert to pixel space.
* \return a pixel coordinate in the dataset.
*/
glm::ivec2 geodeticToPixel(const Geodetic2& geo,
const std::array<double, 6>& transform)
{
const std::array<double, 6>& t = transform;
const double Y = glm::degrees(geo.lat);
const double X = glm::degrees(geo.lon);
const double divisor = t[2] * t[4] - t[1] * t[5];
ghoul_assert(divisor != 0.0, "Division by zero!");
const double P = (t[0] * t[5] - t[2] * t[3] + t[2] * Y - t[5] * X) / divisor;
const double L = (-t[0] * t[4] + t[1] * t[3] - t[1] * Y + t[4] * X) / divisor;
// ref: https://www.wolframalpha.com/input/?i=X+%3D+a0+%2B+a1P+%2B+a2L,
// +Y+%3D+b0+%2B+b1P+%2B+b2L,+solve+for+P+and+L
[[maybe_unused]] const double Xp = t[0] + P * t[1] + L * t[2];
[[maybe_unused]] const double Yp = t[3] + P * t[4] + L * t[5];
ghoul_assert(std::abs(X - Xp) < 1e-10, "inverse should yield X as before");
ghoul_assert(std::abs(Y - Yp) < 1e-10, "inverse should yield Y as before");
return glm::ivec2(glm::round(P), glm::round(L));
}
/**
* Get a pixel region corresponding to the given GeodeticPatch. If the dataset has
* overviews the function returns the pixel region at the lowest overview (highest
* resolution).
*
* \param \p geodeticPatch is a patch covering an area in geodetic coordinates
* \return A PixelRegion covering the given geodetic patch at highest resolution.
*/
PixelRegion highestResPixelRegion(const GeodeticPatch& geodeticPatch,
const std::array<double, 6>& transform)
{
const Geodetic2 nwCorner = geodeticPatch.corner(Quad::NORTH_WEST);
const Geodetic2 swCorner = geodeticPatch.corner(Quad::SOUTH_EAST);
const glm::ivec2 pixelStart = geodeticToPixel(nwCorner, transform);
const glm::ivec2 pixelEnd = geodeticToPixel(swCorner, transform);
PixelRegion region;
region.start = pixelStart;
region.numPixels = pixelEnd - pixelStart;
return region;
}
RawTile::ReadError postProcessErrorCheck(const RawTile& rawTile,
[[ maybe_unused ]] size_t nRasters,
float noDataValue)
{
ghoul_assert(nRasters == rawTile.tileMetaData.nValues, "Wrong numbers of max values");
const bool hasMissingData = std::any_of(
rawTile.tileMetaData.maxValues.begin(),
rawTile.tileMetaData.maxValues.begin() + rawTile.tileMetaData.nValues,
[noDataValue](float v) { return v == noDataValue; }
);
const bool onHighLevel = rawTile.tileIndex.level > 6;
if (hasMissingData && onHighLevel) {
return RawTile::ReadError::Fatal;
}
return RawTile::ReadError::None;
}
} // namespace
RawTileDataReader::RawTileDataReader(std::string filePath,
TileTextureInitData initData,
PerformPreprocessing preprocess)
: _datasetFilePath(std::move(filePath))
, _initData(std::move(initData))
, _preprocess(preprocess)
{
ZoneScoped
initialize();
}
RawTileDataReader::~RawTileDataReader() {
std::lock_guard lockGuard(_datasetLock);
if (_dataset) {
GDALClose(_dataset);
_dataset = nullptr;
}
}
void RawTileDataReader::initialize() {
ZoneScoped
if (_datasetFilePath.empty()) {
throw ghoul::RuntimeError("File path must not be empty");
}
GlobeBrowsingModule& module = *global::moduleEngine->module<GlobeBrowsingModule>();
std::string content = _datasetFilePath;
if (module.isWMSCachingEnabled()) {
ZoneScopedN("WMS Caching")
std::string c;
if (std::filesystem::is_regular_file(_datasetFilePath)) {
// Only replace the 'content' if the dataset is an XML file and we want to do
// caching
std::ifstream t(_datasetFilePath);
c.append(
(std::istreambuf_iterator<char>(t)),
std::istreambuf_iterator<char>()
);
}
else {
//GDAL input case for configuration string (e.g. temporal data)
c = _datasetFilePath;
}
if (c.size() > 10 && c.substr(0, 10) == "<GDAL_WMS>") {
// We know that _datasetFilePath is an XML file, so now we add a Cache line
// into it iff there isn't already one in the XML and if the configuration
// says we should
// 1. Parse XML
// 2. Inject Cache tag if it isn't already there
// 3. Serialize XML to pass into GDAL
LDEBUGC(_datasetFilePath, "Inserting caching tag");
bool shouldSerializeXml = false;
CPLXMLNode* root = CPLParseXMLString(c.c_str());
CPLXMLNode* cache = CPLSearchXMLNode(root, "Cache");
if (!cache) {
// If there already is a cache, we don't want to modify it
cache = CPLCreateXMLNode(root, CXT_Element, "Cache");
CPLCreateXMLElementAndValue(
cache,
"Path",
absPath(module.wmsCacheLocation()).string().c_str()
);
CPLCreateXMLElementAndValue(cache, "Depth", "4");
CPLCreateXMLElementAndValue(cache, "Expires", "315576000"); // 10 years
CPLCreateXMLElementAndValue(
cache,
"MaxSize",
std::to_string(module.wmsCacheSize()).c_str()
);
// The serialization only needs to be one if the cache didn't exist
// already
shouldSerializeXml = true;
}
if (module.isInOfflineMode()) {
CPLXMLNode* offlineMode = CPLSearchXMLNode(root, "OfflineMode");
if (!offlineMode) {
CPLCreateXMLElementAndValue(root, "OfflineMode", "true");
shouldSerializeXml = true;
}
}
if (shouldSerializeXml) {
content = std::string(CPLSerializeXMLTree(root));
//CPLSerializeXMLTreeToFile(root, (_datasetFilePath + ".xml").c_str());
}
}
}
{
ZoneScopedN("GDALOpen")
_dataset = static_cast<GDALDataset*>(GDALOpen(content.c_str(), GA_ReadOnly));
if (!_dataset) {
throw ghoul::RuntimeError("Failed to load dataset: " + _datasetFilePath);
}
}
// Assume all raster bands have the same data type
_rasterCount = _dataset->GetRasterCount();
// calculateTileDepthTransform
unsigned long long maximumValue = [](GLenum t) {
switch (t) {
case GL_UNSIGNED_BYTE: return 1ULL << 8ULL;
case GL_UNSIGNED_SHORT: return 1ULL << 16ULL;
case GL_SHORT: return 1ULL << 15ULL;
case GL_UNSIGNED_INT: return 1ULL << 32ULL;
case GL_INT: return 1ULL << 31ULL;
case GL_HALF_FLOAT: return 1ULL;
case GL_FLOAT: return 1ULL;
case GL_DOUBLE: return 1ULL;
default: throw ghoul::MissingCaseException();
}
}(_initData.glType);
_depthTransform.scale = static_cast<float>(
_dataset->GetRasterBand(1)->GetScale() * maximumValue
);
_depthTransform.offset = static_cast<float>(
_dataset->GetRasterBand(1)->GetOffset()
);
_rasterXSize = _dataset->GetRasterXSize();
_rasterYSize = _dataset->GetRasterYSize();
_noDataValue = static_cast<float>(_dataset->GetRasterBand(1)->GetNoDataValue());
_dataType = toGDALDataType(_initData.glType);
CPLErr error = _dataset->GetGeoTransform(_padfTransform.data());
if (error == CE_Failure) {
_padfTransform = geoTransform(_rasterXSize, _rasterYSize);
}
double tileLevelDifference = calculateTileLevelDifference(
_dataset,
_initData.dimensions.x
);
const int numOverviews = _dataset->GetRasterBand(1)->GetOverviewCount();
_maxChunkLevel = static_cast<int>(-tileLevelDifference);
if (numOverviews > 0) {
_maxChunkLevel += numOverviews;
}
_maxChunkLevel = std::max(_maxChunkLevel, 2);
}
void RawTileDataReader::reset() {
std::lock_guard lockGuard(_datasetLock);
_maxChunkLevel = -1;
if (_dataset) {
GDALClose(_dataset);
_dataset = nullptr;
}
initialize();
}
RawTile::ReadError RawTileDataReader::rasterRead(int rasterBand,
const IODescription& io,
char* dataDestination) const
{
ghoul_assert(isInside(io.read.region, io.read.fullRegion), "write region of bounds!");
ghoul_assert(
io.write.region.start.x >= 0 && io.write.region.start.y >= 0,
"Invalid write region"
);
const glm::ivec2 end = io.write.region.start + io.write.region.numPixels;
[[maybe_unused]] const size_t largestIndex =
(end.y - 1) * io.write.bytesPerLine + (end.x - 1) * _initData.bytesPerPixel;
ghoul_assert(largestIndex <= io.write.totalNumBytes, "Invalid write region");
char* dataDest = dataDestination;
// GDAL reads pixels top to bottom, but we want our pixels bottom to top.
// Therefore, we increment the destination pointer to the last line on in the
// buffer, and the we specify in the rasterIO call that we want negative line
// spacing. Doing this compensates the flipped Y axis
dataDest += (io.write.totalNumBytes - io.write.bytesPerLine);
// handle requested write region. Note -= since flipped y axis
dataDest -= io.write.region.start.y * io.write.bytesPerLine;
dataDest += io.write.region.start.x * _initData.bytesPerPixel;
GDALRasterBand* gdalRasterBand = _dataset->GetRasterBand(rasterBand);
CPLErr readError = CE_Failure;
readError = gdalRasterBand->RasterIO(
GF_Read,
io.read.region.start.x, // Begin read x
io.read.region.start.y, // Begin read y
io.read.region.numPixels.x, // width to read x
io.read.region.numPixels.y, // width to read y
dataDest, // Where to put data
io.write.region.numPixels.x, // width to write x in destination
io.write.region.numPixels.y, // width to write y in destination
_dataType, // Type
static_cast<int>(_initData.bytesPerPixel), // Pixel spacing
-static_cast<int>(io.write.bytesPerLine) // Line spacing
);
// Convert error to RawTile::ReadError
switch (readError) {
case CE_None: return RawTile::ReadError::None;
case CE_Debug: return RawTile::ReadError::Debug;
case CE_Warning: return RawTile::ReadError::Warning;
case CE_Failure: return RawTile::ReadError::Failure;
case CE_Fatal: return RawTile::ReadError::Fatal;
default: return RawTile::ReadError::Failure;
}
}
RawTile RawTileDataReader::readTileData(TileIndex tileIndex) const {
size_t numBytes = _initData.totalNumBytes;
RawTile rawTile;
rawTile.imageData = std::unique_ptr<std::byte[]>(new std::byte[numBytes]);
memset(rawTile.imageData.get(), 0xFF, numBytes);
IODescription io = ioDescription(tileIndex);
RawTile::ReadError worstError = RawTile::ReadError::None;
readImageData(io, worstError, reinterpret_cast<char*>(rawTile.imageData.get()));
for (const MemoryLocation& ml : NoDataAvailableData) {
std::byte* ptr = rawTile.imageData.get();
if (ml.offset >= static_cast<int>(numBytes) || ptr[ml.offset] != ml.value) {
// Bail out as early as possible
break;
}
// If we got here, we have (most likely) a No data yet available tile
worstError = RawTile::ReadError::Failure;
}
rawTile.error = worstError;
rawTile.tileIndex = std::move(tileIndex);
rawTile.textureInitData = _initData;
if (_preprocess) {
rawTile.tileMetaData = tileMetaData(rawTile, io.write.region);
rawTile.error = std::max(
rawTile.error,
postProcessErrorCheck(rawTile, _initData.nRasters, noDataValueAsFloat())
);
}
return rawTile;
}
void RawTileDataReader::readImageData(IODescription& io, RawTile::ReadError& worstError,
char* imageDataDest) const
{
// Only read the minimum number of rasters
int nRastersToRead = std::min(_rasterCount, static_cast<int>(_initData.nRasters));
switch (_initData.ghoulTextureFormat) {
case ghoul::opengl::Texture::Format::Red: {
char* dest = imageDataDest;
const RawTile::ReadError err = repeatedRasterRead(1, io, dest);
worstError = std::max(worstError, err);
break;
}
case ghoul::opengl::Texture::Format::RG:
case ghoul::opengl::Texture::Format::RGB:
case ghoul::opengl::Texture::Format::RGBA: {
if (nRastersToRead == 1) { // Grayscale
for (int i = 0; i < 3; i++) {
// The final destination pointer is offsetted by one datum byte size
// for every raster (or data channel, i.e. R in RGB)
char* dest = imageDataDest + (i * _initData.bytesPerDatum);
const RawTile::ReadError err = repeatedRasterRead(1, io, dest);
worstError = std::max(worstError, err);
}
}
else if (nRastersToRead == 2) { // Grayscale + alpha
for (int i = 0; i < 3; i++) {
// The final destination pointer is offsetted by one datum byte size
// for every raster (or data channel, i.e. R in RGB)
char* dest = imageDataDest + (i * _initData.bytesPerDatum);
const RawTile::ReadError err = repeatedRasterRead(1, io, dest);
worstError = std::max(worstError, err);
}
// Last read is the alpha channel
char* dest = imageDataDest + (3 * _initData.bytesPerDatum);
const RawTile::ReadError err = repeatedRasterRead(2, io, dest);
worstError = std::max(worstError, err);
}
else { // Three or more rasters
for (int i = 0; i < nRastersToRead; i++) {
// The final destination pointer is offsetted by one datum byte size
// for every raster (or data channel, i.e. R in RGB)
char* dest = imageDataDest + (i * _initData.bytesPerDatum);
const RawTile::ReadError err = repeatedRasterRead(i + 1, io, dest);
worstError = std::max(worstError, err);
}
}
break;
}
case ghoul::opengl::Texture::Format::BGR:
case ghoul::opengl::Texture::Format::BGRA: {
if (nRastersToRead == 1) { // Grayscale
for (int i = 0; i < 3; i++) {
// The final destination pointer is offsetted by one datum byte size
// for every raster (or data channel, i.e. R in RGB)
char* dest = imageDataDest + (i * _initData.bytesPerDatum);
const RawTile::ReadError err = repeatedRasterRead(1, io, dest);
worstError = std::max(worstError, err);
}
}
else if (nRastersToRead == 2) { // Grayscale + alpha
for (int i = 0; i < 3; i++) {
// The final destination pointer is offsetted by one datum byte size
// for every raster (or data channel, i.e. R in RGB)
char* dest = imageDataDest + (i * _initData.bytesPerDatum);
const RawTile::ReadError err = repeatedRasterRead(1, io, dest);
worstError = std::max(worstError, err);
}
// Last read is the alpha channel
char* dest = imageDataDest + (3 * _initData.bytesPerDatum);
const RawTile::ReadError err = repeatedRasterRead(2, io, dest);
worstError = std::max(worstError, err);
}
else { // Three or more rasters
for (int i = 0; i < 3 && i < nRastersToRead; i++) {
// The final destination pointer is offsetted by one datum byte size
// for every raster (or data channel, i.e. R in RGB)
char* dest = imageDataDest + (i * _initData.bytesPerDatum);
const RawTile::ReadError err = repeatedRasterRead(3 - i, io, dest);
worstError = std::max(worstError, err);
}
}
if (nRastersToRead > 3) { // Alpha channel exists
// Last read is the alpha channel
char* dest = imageDataDest + (3 * _initData.bytesPerDatum);
const RawTile::ReadError err = repeatedRasterRead(4, io, dest);
worstError = std::max(worstError, err);
}
break;
}
default: {
ghoul_assert(false, "Texture format not supported for tiles");
break;
}
}
}
IODescription RawTileDataReader::ioDescription(const TileIndex& tileIndex) const {
IODescription io;
io.read.region = highestResPixelRegion(tileIndex, _padfTransform);
// write region starts in origin
io.write.region.start = glm::ivec2(0);
io.write.region.numPixels = _initData.dimensions;
io.read.overview = 0;
io.read.fullRegion.start = { 0, 0 };
io.read.fullRegion.numPixels = { _rasterXSize, _rasterYSize };
// For correct sampling in dataset, we need to pad the texture tile
PixelRegion scaledPadding;
scaledPadding.start = _initData.tilePixelStartOffset;
scaledPadding.numPixels = _initData.tilePixelSizeDifference;
const double scale = static_cast<double>(io.read.region.numPixels.x) /
static_cast<double>(io.write.region.numPixels.x);
scaledPadding.numPixels *= scale;
scaledPadding.start *= scale;
io.read.region.start += scaledPadding.start;
io.read.region.numPixels += scaledPadding.numPixels;
io.write.bytesPerLine = _initData.bytesPerLine;
io.write.totalNumBytes = _initData.totalNumBytes;
ghoul_assert(
io.write.region.numPixels.x == io.write.region.numPixels.y,
"Write region must be square"
);
ghoul_assert(
io.write.region.numPixels.x == _initData.dimensions.x,
"Write region must match tile it writes to."
);
return io;
}
const TileDepthTransform& RawTileDataReader::depthTransform() const {
return _depthTransform;
}
glm::ivec2 RawTileDataReader::fullPixelSize() const {
return geodeticToPixel(Geodetic2{ 90.0, 180.0 }, _padfTransform);
}
RawTile::ReadError RawTileDataReader::repeatedRasterRead(int rasterBand,
const IODescription& fullIO,
char* dataDestination,
int depth) const
{
// NOTE:
// Ascii graphics illustrates the implementation details of this method, for one
// specific case. Even though the illustrated case is specific, readers can
// hopefully find it useful to get the general idea.
// Make a copy of the full IO desription as we will have to modify it
IODescription io = fullIO;
// Example:
// We have an io description that defines a WRITE and a READ region.
// In this case the READ region extends outside of the defined io.read.fullRegion,
// meaning we will have to perform wrapping
// io.write.region io.read.region
// | |
// V V
// +-------+ +-------+
// | | | |--------+
// | | | | |
// | | | | |
// +-------+ +-------+ |
// | | <-- io.read.fullRegion
// | |
// +--------------+
RawTile::ReadError worstError = RawTile::ReadError::None;
if (!isInside(io.read.region, io.read.fullRegion)) {
// Loop through each side: left, top, right, bottom
for (int i = 0; i < 4; ++i) {
// Example:
// We are currently considering the left side of the pixel region
const Side side = static_cast<Side>(i);
IODescription cutoff = cutIODescription(
io,
side,
edge(io.read.fullRegion, side)
);
// Example:
// We cut off the left part that was outside the io.read.fullRegion, and we
// now have an additional io description for the cut off region.
// Note that the cut-method used above takes care of the corresponding
// WRITE region for us.
// cutoff.write.region cutoff.read.region
// | io.write.region | io.read.region
// | | | |
// V V V V
// +-+-----+ +-+-----+
// | | | | | |--------+
// | | | | | | |
// | | | | | | |
// +-+-----+ +-+-----+ |
// | | <-- io.read.fullRegion
// | |
// +--------------+
const int area = cutoff.read.region.numPixels.x *
cutoff.read.region.numPixels.y;
if (area > 0) {
// Wrap by repeating
Side oppositeSide = static_cast<Side>((i + 2) % 4);
alignPixelRegion(
cutoff.read.region,
oppositeSide,
edge(io.read.fullRegion, oppositeSide)
);
// Example:
// The cut off region is wrapped to the opposite side of the region,
// i.e. "repeated". Note that we don't want WRITE region to change,
// we're only wrapping the READ region.
// cutoff.write.region io.read.region cutoff.read.region
// | io.write.region | |
// | | V V
// V V +-----+ +-+
// +-+-----+ | |------| |
// | | | | | | |
// | | | | | | |
// | | | +-----+ +-+
// +-+-----+ | | <-- io.read.fullRegion
// | |
// +--------------+
// Example:
// The cutoff region has been repeated along one of its sides, but
// as we can see in this example, it still has a top part outside the
// defined gdal region. This is handled through recursion.
const RawTile::ReadError err = repeatedRasterRead(
rasterBand,
cutoff,
dataDestination,
depth + 1
);
worstError = std::max(worstError, err);
}
}
}
const RawTile::ReadError err = rasterRead(rasterBand, io, dataDestination);
// The return error from a repeated rasterRead is ONLY based on the main region,
// which in the usual case will cover the main area of the patch anyway
return err;
}
TileMetaData RawTileDataReader::tileMetaData(RawTile& rawTile,
const PixelRegion& region) const
{
const size_t bytesPerLine = _initData.bytesPerPixel * region.numPixels.x;
TileMetaData ppData;
ghoul_assert(_initData.nRasters <= 4, "Unexpected number of rasters");
ppData.nValues = static_cast<uint8_t>(_initData.nRasters);
std::fill(ppData.maxValues.begin(), ppData.maxValues.end(), -FLT_MAX);
std::fill(ppData.minValues.begin(), ppData.minValues.end(), FLT_MAX);
std::fill(ppData.hasMissingData.begin(), ppData.hasMissingData.end(), false);
bool allIsMissing = true;
for (int y = 0; y < region.numPixels.y; ++y) {
const size_t yi =
(static_cast<unsigned long long>(region.numPixels.y) - 1 - y) * bytesPerLine;
size_t i = 0;
for (int x = 0; x < region.numPixels.x; ++x) {
for (size_t raster = 0; raster < _initData.nRasters; ++raster) {
const float noDataValue = noDataValueAsFloat();
const float val = interpretFloat(
_initData.glType,
&(rawTile.imageData.get()[yi + i])
);
if (val != noDataValue && val == val) {
ppData.maxValues[raster] = std::max(
val,
ppData.maxValues[raster]
);
ppData.minValues[raster] = std::min(
val,
ppData.minValues[raster]
);
allIsMissing = false;
}
else {
ppData.hasMissingData[raster] = true;
float& floatToRewrite = reinterpret_cast<float&>(
rawTile.imageData[yi + i]
);
floatToRewrite = -std::numeric_limits<float>::max();
}
i += _initData.bytesPerDatum;
}
}
}
if (allIsMissing) {
rawTile.error = RawTile::ReadError::Failure;
}
return ppData;
}
int RawTileDataReader::maxChunkLevel() const {
return _maxChunkLevel;
}
float RawTileDataReader::noDataValueAsFloat() const {
return _noDataValue;
}
} // namespace openspace::globebrowsing