Files
OpenSpace/modules/atmosphere/rendering/atmospheredeferredcaster.cpp

1608 lines
70 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2017 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/atmosphere/rendering/atmospheredeferredcaster.h>
#include <ghoul/glm.h>
#include <ghoul/opengl/ghoul_gl.h>
#include <ghoul/opengl/texture.h>
#include <ghoul/opengl/textureunit.h>
#include <ghoul/opengl/programobject.h>
#include <openspace/engine/openspaceengine.h>
#include <openspace/util/powerscaledcoordinate.h>
#include <openspace/util/updatestructures.h>
#include <openspace/util/spicemanager.h>
#include <openspace/rendering/renderable.h>
#include <openspace/rendering/renderengine.h>
#include <glm/gtx/string_cast.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtx/transform.hpp>
#include <glm/gtx/vector_angle.hpp>
#include <glm/gtc/quaternion.hpp>
#include <sstream>
#include <fstream>
#define _USE_MATH_DEFINES
#include <math.h>
//#define _SAVE_ATMOSPHERE_TEXTURES
namespace {
const std::string _loggerCat = "AtmosphereDeferredcaster";
const char* GlslDeferredcastPath = "${MODULES}/atmosphere/shaders/deferred_test_fs.glsl";
const char* GlslDeferredcastFSPath = "${MODULES}/atmosphere/shaders/deferred_test_fs.glsl";
const char* GlslDeferredcastVsPath = "${MODULES}/atmosphere/shaders/atmosphere_deferred_vs.glsl";
}
namespace openspace {
AtmosphereDeferredcaster::AtmosphereDeferredcaster()
: //_programObject(nullptr)
_transmittanceProgramObject(nullptr)
, _irradianceProgramObject(nullptr)
, _irradianceSupTermsProgramObject(nullptr)
, _inScatteringProgramObject(nullptr)
, _inScatteringSupTermsProgramObject(nullptr)
, _deltaEProgramObject(nullptr)
, _irradianceFinalProgramObject(nullptr)
, _deltaSProgramObject(nullptr)
, _deltaSSupTermsProgramObject(nullptr)
, _deltaJProgramObject(nullptr)
, _atmosphereProgramObject(nullptr)
, _transmittanceTableTexture(0)
, _irradianceTableTexture(0)
, _inScatteringTableTexture(0)
, _deltaETableTexture(0)
, _deltaSRayleighTableTexture(0)
, _deltaSMieTableTexture(0)
, _deltaJTableTexture(0)
, _atmosphereTexture(0)
, _atmosphereDepthTexture(0)
, _atmosphereFBO(0)
, _atmosphereRenderVAO(0)
, _atmosphereRenderVBO(0)
, _atmosphereCalculated(false)
, _atmosphereEnabled(false)
, _atmosphereRadius(0.f)
, _atmospherePlanetRadius(0.f)
, _planetAverageGroundReflectance(0.f)
, _rayleighHeightScale(0.f)
, _mieHeightScale(0.f)
, _miePhaseConstant(0.f)
, _mieExtinctionCoeff(glm::vec3(0.f))
, _rayleighScatteringCoeff(glm::vec3(0.f))
, _mieScatteringCoeff(glm::vec3(0.f))
, _ellipsoidRadii(glm::dvec3(0.0))
, _sunRadianceIntensity(50.0f)
, _hdrConstant(0.4f)
, _renderableClass(NoRenderableClass)
{}
AtmosphereDeferredcaster::~AtmosphereDeferredcaster() {}
void AtmosphereDeferredcaster::initialize()
{
if (!_atmosphereCalculated) {
preCalculateAtmosphereParam();
}
}
void AtmosphereDeferredcaster::deinitialize()
{
// TODO
// Review if the programs should be part of the renderEngine.
RenderEngine& renderEngine = OsEng.renderEngine();
// if (_programObject) {
// renderEngine.removeRenderProgram(_programObject);
// _programObject = nullptr;
// }
if (_transmittanceProgramObject) {
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject = nullptr;
}
if (_inScatteringProgramObject) {
_inScatteringProgramObject = nullptr;
}
if (_inScatteringSupTermsProgramObject) {
_inScatteringSupTermsProgramObject = nullptr;
}
if (_deltaEProgramObject) {
_deltaEProgramObject = nullptr;
}
if (_deltaSProgramObject) {
_deltaSProgramObject = nullptr;
}
if (_deltaSSupTermsProgramObject) {
_deltaSSupTermsProgramObject = nullptr;
}
if (_deltaJProgramObject) {
_deltaJProgramObject = nullptr;
}
glDeleteTextures(1, &_transmittanceTableTexture);
glDeleteTextures(1, &_irradianceTableTexture);
glDeleteTextures(1, &_inScatteringTableTexture);
glDeleteTextures(1, &_deltaETableTexture);
glDeleteTextures(1, &_deltaSRayleighTableTexture);
glDeleteTextures(1, &_deltaSMieTableTexture);
glDeleteTextures(1, &_deltaJTableTexture);
glDeleteTextures(1, &_atmosphereTexture);
}
void AtmosphereDeferredcaster::preRaycast(const RenderData & renderData, const DeferredcastData& deferredData,
ghoul::opengl::ProgramObject& program)
{
program.setUniform("Rg", _atmospherePlanetRadius);
program.setUniform("Rt", _atmosphereRadius);
program.setUniform("AverageGroundReflectance", _planetAverageGroundReflectance);
program.setUniform("HR", _rayleighHeightScale);
program.setUniform("betaRayleigh", _rayleighScatteringCoeff);
program.setUniform("HM", _mieHeightScale);
program.setUniform("betaMieScattering", _mieScatteringCoeff);
program.setUniform("betaMieExtinction", _mieExtinctionCoeff);
program.setUniform("mieG", _miePhaseConstant);
program.setUniform("sunRadiance", _sunRadianceIntensity);
program.setUniform("exposure", _hdrConstant);
program.setUniform("RenderableClass", static_cast<int>(_renderableClass));
program.setUniform("ModelTransformMatrix", glm::dmat4(_modelTransform));
// Object Space
//program.setUniform("inverseTransformMatrix", glm::inverse(_modelTransform));
program.setUniform("dInverseTransformMatrix", glm::inverse(glm::dmat4(_modelTransform)));
// The following scale comes from PSC transformations.
float fScaleFactor = renderData.camera.scaling().x * pow(10.0, renderData.camera.scaling().y);
glm::dmat4 dfScaleCamTransf = glm::scale(glm::dvec3(fScaleFactor));
program.setUniform("dInverseScaleTransformMatrix", glm::inverse(dfScaleCamTransf));
// Object Space to World Space (in meters)
//glm::dmat4 dObj2World = glm::translate(data.position.dvec3()) * glm::dmat4(transform);
//glm::dmat4 dWorld2Obj = glm::inverse(dObj2World);
//program.setUniform("dObjToWorldTransform", dObj2World);
//program.setUniform("dWorldToObjectTransform", dWorld2Obj);
// World to Eye Space in OS
//glm::dmat4 dWorld2Eye = dfScaleCamTransf * renderData.camera.viewRotationMatrix() *
// glm::translate(-renderData.camera.positionVec3());
//glm::dmat4 dEye2World = glm::inverse(dWorld2Eye);
program.setUniform("dInverseCamRotTransform", glm::mat4_cast((glm::dquat)renderData.camera.rotationQuaternion()));
//program.setUniform("dWorldToOsEyeTransform", dWorld2Eye);
//program.setUniform("dOsEyeToWorldTransform", dEye2World);
program.setUniform("dInverseSgctEyeToWorldTranform", glm::inverse(renderData.camera.combinedViewMatrix()));
// Eye Space in OS to Eye Space in SGCT
glm::dmat4 dOsEye2SGCTEye = glm::dmat4(renderData.camera.viewMatrix());
glm::dmat4 dSgctEye2OSEye = glm::inverse(dOsEye2SGCTEye);
//program.setUniform("dOsEyeToSGCTEyeTranform", dOsEye2SGCTEye);
program.setUniform("dSgctEyeToOSEyeTranform", dSgctEye2OSEye);
// Eye Space in SGCT to Projection (Clip) Space in SGCT
glm::dmat4 dSgctEye2Clip = glm::dmat4(renderData.camera.projectionMatrix());
glm::dmat4 dInverseProjection = glm::inverse(dSgctEye2Clip);
//program.setUniform("dSgctEyeToClipTranform", dSgctEye2Clip);
program.setUniform("dInverseSgctProjectionMatrix", dInverseProjection);
//program.setUniform("dSgctProjectionMatrix", glm::dmat4(data.camera.projectionMatrix()));
program.setUniform("dObjpos", glm::dvec4(renderData.position.dvec3(), 1.0));
program.setUniform("dCampos", renderData.camera.positionVec3());
//program.setUniform("dCamrot", glm::dmat3(data.camera.viewRotationMatrix()));
// I know it is (0,0,0). It is here just for sake of sanity. :-p
double lt;
glm::dvec3 sunPosWorld = SpiceManager::ref().targetPosition("SUN", "SUN", "GALACTIC", {}, _time, lt);
glm::dvec4 sunPosObj = glm::dvec4(0.0);
if (_renderableClass == RenderablePlanet) {
sunPosObj = glm::inverse(_modelTransform) *
glm::dvec4(sunPosWorld - renderData.position.dvec3(), 1.0);
}
else if (_renderableClass == RenderableGlobe) {
sunPosObj = glm::inverse(_modelTransform) *
glm::dvec4(sunPosWorld - renderData.modelTransform.translation, 1.0);
}
program.setUniform("ellipsoidRadii", _ellipsoidRadii);
//program.setUniform("sunPositionObj", sunPosObj);
program.setUniform("sunDirectionObj", glm::normalize(glm::dvec3(sunPosObj)));
//program.setUniform("_performShading", _performShading);
ghoul::opengl::TextureUnit transmittanceTableTextureUnit;
transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
program.setUniform("transmittanceTexture", transmittanceTableTextureUnit);
ghoul::opengl::TextureUnit irradianceTableTextureUnit;
irradianceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _irradianceTableTexture);
program.setUniform("irradianceTexture", irradianceTableTextureUnit);
ghoul::opengl::TextureUnit inScatteringTableTextureUnit;
inScatteringTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _inScatteringTableTexture);
program.setUniform("inscatterTexture", inScatteringTableTextureUnit);
// DEBUG:
if (_renderableClass == RenderablePlanet) {
glm::dvec3 objP = glm::dvec3(renderData.position[0] * pow(10, renderData.position[3]),
renderData.position[1] * pow(10, renderData.position[3]), renderData.position[2] * pow(10, renderData.position[3]));
glm::dvec4 cameraP = glm::inverse(glm::dmat4(_modelTransform)) * glm::dvec4(-objP + renderData.camera.positionVec3(), 1.0);
/*std::cout << "====== Planet's position in KM: " << glm::to_string( objP/glm::dvec3(1000.0, 1000.0, 1000.0) )
<< " =======" << std::endl;
std::cout << "====== Distance from Planet's ground in KM: "
<< glm::length(glm::dvec3(cameraP / glm::dvec4(1000.0, 1000.0, 1000.0, 1.0))) - _atmospherePlanetRadius
<< " =======" << std::endl;
std::cout << "====== Camera Position: " << glm::to_string(renderData.camera.positionVec3()) << " =====" << std::endl; */
}
else if (_renderableClass == RenderableGlobe) {
glm::dvec3 objP = renderData.modelTransform.translation;
glm::dvec4 cameraP = glm::inverse(glm::dmat4(_modelTransform)) * glm::dvec4(renderData.camera.positionVec3(), 1);
/*std::cout << "====== Planet's position in KM: " << glm::to_string( objP/glm::dvec3(1000.0, 1000.0, 1000.0) )
<< " =======" << std::endl;
std::cout << "====== Distance from Planet's ground in KM: "
<< glm::length(glm::dvec3(cameraP / glm::dvec4(1000.0, 1000.0, 1000.0, 1.0))) - _atmospherePlanetRadius
<< " =======" << std::endl;
std::cout << "====== Camera Position: " << glm::to_string(renderData.camera.positionVec3()) << " =====" << std::endl;
std::cout << "--- Ellipsoid Radii: " << glm::to_string(_ellipsoidRadii) << " ----" << std::endl;*/
// Testing Transformations:
glm::dvec4 tObjCoords = glm::dvec4(0.0); tObjCoords.w = 1.0;
std::cout << "==== Obj Coordinates: " << glm::to_string(tObjCoords) << " ====" << std::endl;
glm::dvec4 tWorldCoords = _modelTransform * tObjCoords;
std::cout << "==== World Coordinates: " << glm::to_string(tWorldCoords) << " ====" << std::endl;
glm::dvec4 tSGCTEyeCoords = renderData.camera.combinedViewMatrix() * tWorldCoords;
std::cout << "==== SGCT Eye Coordinates: " << glm::to_string(tSGCTEyeCoords) << " ====" << std::endl;
glm::dvec4 tSGCTViewCoords = renderData.camera.projectionMatrix() * tSGCTEyeCoords;
std::cout << "==== SGCT View Coordinates: " << glm::to_string(tSGCTViewCoords) << " ====" << std::endl;
glm::dvec4 tSGCTEyeCoordsInv = dInverseProjection * tSGCTViewCoords;
std::cout << "==== SGCT Eye Coordinates Inv: " << glm::to_string(tSGCTEyeCoords) << " ====" << std::endl;
glm::dvec4 tWorldCoordsInv = glm::inverse(renderData.camera.combinedViewMatrix()) * tSGCTEyeCoordsInv;
tWorldCoordsInv /= tWorldCoordsInv.w;
std::cout << "==== World Coordinates Inv: " << glm::to_string(tWorldCoordsInv) << " ====" << std::endl;
glm::dvec4 tObjCoordsInv = glm::inverse(_modelTransform) * tWorldCoordsInv;
std::cout << "==== Obj Coordinates Inv: " << glm::to_string(tObjCoordsInv) << " ====" << std::endl;
glm::dmat4 cameraTranslation = glm::inverse(glm::translate(glm::dmat4(1.0), static_cast<glm::dvec3>(renderData.camera.positionVec3())));
glm::dmat4 sgctViewMatrix = renderData.camera.viewMatrix();
glm::dmat4 camRotationMatrix = glm::mat4_cast(glm::inverse((glm::dquat)renderData.camera.rotationQuaternion()));
glm::dmat4 SGCTEyeToWorld = glm::inverse(cameraTranslation) * glm::inverse(camRotationMatrix) * glm::inverse(sgctViewMatrix);
glm::dvec4 tWorldCoordsInv2 = SGCTEyeToWorld * tSGCTEyeCoordsInv;
tWorldCoordsInv2 /= tWorldCoordsInv2.w;
std::cout << "==== World Coordinates Inv2: " << glm::to_string(tWorldCoordsInv2) << " ====" << std::endl;
glm::dvec4 tObjCoordsInv2 = glm::inverse(_modelTransform) * tWorldCoordsInv2;
std::cout << "==== Obj Coordinates Inv2: " << glm::to_string(tObjCoordsInv2) << " ====" << std::endl;
glm::dmat4 objTranslation = glm::translate(glm::dmat4(1.0), renderData.modelTransform.translation);
glm::dmat4 objRotation = glm::dmat4(renderData.modelTransform.rotation);
glm::dmat4 objScaling = glm::scale(glm::dmat4(1.0), glm::dvec3(renderData.modelTransform.scale,
renderData.modelTransform.scale, renderData.modelTransform.scale));
glm::dmat4 modelTrans = objTranslation * objRotation * objScaling;
std::cout << "==== Obj Coordinates Inv3: " << glm::to_string(glm::inverse(modelTrans) * tWorldCoordsInv) << " ====" << std::endl;
glm::dmat4 invModelTrans = glm::inverse(objScaling) * glm::inverse(objRotation) * glm::inverse(objTranslation);
std::cout << "==== Obj Coordinates Inv3: " << glm::to_string(invModelTrans * tWorldCoordsInv) << " ====" << std::endl;
glm::dvec4 tmp = tWorldCoordsInv + glm::dvec4(-renderData.modelTransform.translation, 0.0);
glm::dvec3 tmp2 = glm::dmat3(glm::transpose(objRotation)) * glm::dvec3(tmp);
glm::dvec3 tmp3 = glm::dmat3(glm::inverse(objScaling)) * tmp2;
std::cout << "==== Obj Coordinates Inv4: " << glm::to_string(tmp3) << " ====" << std::endl;
glm::dvec4 tmp4 = glm::inverse(sgctViewMatrix) * tSGCTEyeCoordsInv;
//glm::dvec4 tmp5 = glm::transpose(camRotationMatrix) * tmp4;
glm::dvec4 tmp5 = glm::inverse(camRotationMatrix) * tmp4;
glm::dvec3 tWorldCoordsInvHand = glm::dvec3(tmp5) - renderData.camera.positionVec3();
std::cout << "==== World Coordinates Inv3: " << glm::to_string(tWorldCoordsInvHand) << " ====" << std::endl;
glm::dvec3 tmp6 = tWorldCoordsInvHand - renderData.modelTransform.translation;
glm::dvec3 tmp7 = glm::dmat3(glm::transpose(objRotation)) * tmp6;
glm::dvec3 tmp8 = glm::dmat3(glm::inverse(objScaling)) * tmp7;
std::cout << "==== Obj Coordinates Inv5: " << glm::to_string(tmp8) << " ====" << std::endl;
std::cout << "\n\n---> ModelTrans: " << glm::to_string(_modelTransform) << std::endl;
std::cout << "\n\n---> ModelTrans2: " << glm::to_string(modelTrans) << std::endl;
}
}
void AtmosphereDeferredcaster::postRaycast(const RenderData & renderData, const DeferredcastData& deferredData,
ghoul::opengl::ProgramObject& program)
{}
std::string AtmosphereDeferredcaster::getDeferredcastPath() const {
return GlslDeferredcastPath;
}
std::string AtmosphereDeferredcaster::getDeferredcastFSPath() const {
return GlslDeferredcastFSPath;
}
std::string AtmosphereDeferredcaster::getDeferredcastVSPath() const {
return GlslDeferredcastVsPath;
}
std::string AtmosphereDeferredcaster::getHelperPath() const {
return ""; // no helper file
}
void AtmosphereDeferredcaster::setModelTransform(const glm::mat4 &transform) {
_modelTransform = transform;
}
void AtmosphereDeferredcaster::setTime(const double time) {
_time = time;
}
void AtmosphereDeferredcaster::setAtmosphereRadius(const float atmRadius) {
_atmosphereRadius = atmRadius;
}
void AtmosphereDeferredcaster::setPlanetRadius(const float planetRadius) {
_atmospherePlanetRadius = planetRadius;
}
void AtmosphereDeferredcaster::setPlanetAverageGroundReflectance(const float averageGReflectance) {
_planetAverageGroundReflectance = averageGReflectance;
}
void AtmosphereDeferredcaster::setRayleighHeightScale(const float rayleighHeightScale) {
_rayleighHeightScale = rayleighHeightScale;
}
void AtmosphereDeferredcaster::setMieHeightScale(const float mieHeightScale) {
_mieHeightScale = mieHeightScale;
}
void AtmosphereDeferredcaster::setMiePhaseConstant(const float miePhaseConstant) {
_miePhaseConstant = miePhaseConstant;
}
void AtmosphereDeferredcaster::setSunRadianceIntensity(const float sunRadiance) {
_sunRadianceIntensity = sunRadiance;
}
void AtmosphereDeferredcaster::setHDRConstant(const float hdrConstant) {
_hdrConstant = hdrConstant;
}
void AtmosphereDeferredcaster::setRayleighScatteringCoefficients(const glm::vec3 & rayScattCoeff) {
_rayleighScatteringCoeff = rayScattCoeff;
}
void AtmosphereDeferredcaster::setMieScatteringCoefficients(const glm::vec3 & mieScattCoeff) {
_mieScatteringCoeff = mieScattCoeff;
}
void AtmosphereDeferredcaster::setMieExtinctionCoefficients(const glm::vec3 & mieExtCoeff) {
_mieExtinctionCoeff = mieExtCoeff;
}
void AtmosphereDeferredcaster::setEllipsoidRadii(const glm::dvec3 & radii) {
_ellipsoidRadii = radii;
}
void AtmosphereDeferredcaster::setRenderableClass(const AtmosphereDeferredcaster::AtmospherRenderableClass rc)
{
_renderableClass = rc;
}
void AtmosphereDeferredcaster::loadComputationPrograms() {
RenderEngine& renderEngine = OsEng.renderEngine();
//============== Transmittance T =================
if (_transmittanceProgramObject == nullptr) {
_transmittanceProgramObject = ghoul::opengl::ProgramObject::Build(
"transmittanceCalcProgram",
"${MODULE_ATMOSPHERE}/shaders/transmittance_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/transmittance_calc_fs.glsl");
if (!_transmittanceProgramObject) {
return;
}
}
using IgnoreError = ghoul::opengl::ProgramObject::IgnoreError;
_transmittanceProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_transmittanceProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//============== Irradiance E =================
if (_irradianceProgramObject == nullptr) {
_irradianceProgramObject = ghoul::opengl::ProgramObject::Build(
"irradianceCalcProgram",
"${MODULE_ATMOSPHERE}/shaders/irradiance_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/irradiance_calc_fs.glsl");
if (!_irradianceProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
return;
}
}
_irradianceProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_irradianceProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
if (_irradianceSupTermsProgramObject == nullptr) {
_irradianceSupTermsProgramObject = ghoul::opengl::ProgramObject::Build(
"irradianceSupTermsCalcProgram",
"${MODULE_ATMOSPHERE}/shaders/irradiance_sup_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/irradiance_sup_calc_fs.glsl");
if (!_irradianceSupTermsProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
return;
}
}
_irradianceSupTermsProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_irradianceSupTermsProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//============== InScattering S =================
if (_inScatteringProgramObject == nullptr) {
_inScatteringProgramObject = ghoul::opengl::ProgramObject::Build(
"inScatteringCalcProgram",
"${MODULE_ATMOSPHERE}/shaders/inScattering_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/inScattering_calc_fs.glsl",
"${MODULE_ATMOSPHERE}/shaders/inScattering_calc_gs.glsl");
if (!_inScatteringProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject.reset();
_irradianceSupTermsProgramObject = nullptr;
}
return;
}
}
_inScatteringProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_inScatteringProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
if (_inScatteringSupTermsProgramObject == nullptr) {
_inScatteringSupTermsProgramObject = ghoul::opengl::ProgramObject::Build(
"inScatteringSupTermsCalcProgram",
"${MODULE_ATMOSPHERE}/shaders/inScattering_sup_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/inScattering_sup_calc_fs.glsl",
"${MODULE_ATMOSPHERE}/shaders/inScattering_sup_calc_gs.glsl");
if (!_inScatteringSupTermsProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject.reset();
_irradianceSupTermsProgramObject = nullptr;
}
if (_inScatteringProgramObject) {
_inScatteringProgramObject.reset();
_inScatteringProgramObject = nullptr;
}
return;
}
}
_inScatteringSupTermsProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_inScatteringSupTermsProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//============== Delta E =================
if (_deltaEProgramObject == nullptr) {
_deltaEProgramObject = ghoul::opengl::ProgramObject::Build(
"deltaECalcProgram",
"${MODULE_ATMOSPHERE}/shaders/deltaE_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/deltaE_calc_fs.glsl");
if (!_deltaEProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject.reset();
_irradianceSupTermsProgramObject = nullptr;
}
if (_inScatteringProgramObject) {
_inScatteringProgramObject.reset();
_inScatteringProgramObject = nullptr;
}
if (_inScatteringSupTermsProgramObject) {
_inScatteringSupTermsProgramObject.reset();
_inScatteringSupTermsProgramObject = nullptr;
}
return;
}
}
_deltaEProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_deltaEProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//============== Irradiance finel E =================
if (_irradianceFinalProgramObject == nullptr) {
_irradianceFinalProgramObject = ghoul::opengl::ProgramObject::Build(
"irradianceEFinalProgram",
"${MODULE_ATMOSPHERE}/shaders/irradiance_final_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/irradiance_final_fs.glsl");
if (!_irradianceFinalProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject.reset();
_irradianceSupTermsProgramObject = nullptr;
}
if (_inScatteringProgramObject) {
_inScatteringProgramObject.reset();
_inScatteringProgramObject = nullptr;
}
if (_inScatteringSupTermsProgramObject) {
_inScatteringSupTermsProgramObject.reset();
_inScatteringSupTermsProgramObject = nullptr;
}
if (_deltaEProgramObject) {
_deltaEProgramObject.reset();
_deltaEProgramObject = nullptr;
}
return;
}
}
_irradianceFinalProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_irradianceFinalProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//============== Delta S =================
if (_deltaSProgramObject == nullptr) {
_deltaSProgramObject = ghoul::opengl::ProgramObject::Build(
"deltaSCalcProgram",
"${MODULE_ATMOSPHERE}/shaders/deltaS_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/deltaS_calc_fs.glsl",
"${MODULE_ATMOSPHERE}/shaders/deltaS_calc_gs.glsl");
if (!_deltaSProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject.reset();
_irradianceSupTermsProgramObject = nullptr;
}
if (_inScatteringProgramObject) {
_inScatteringProgramObject.reset();
_inScatteringProgramObject = nullptr;
}
if (_inScatteringSupTermsProgramObject) {
_inScatteringSupTermsProgramObject.reset();
_inScatteringSupTermsProgramObject = nullptr;
}
if (_deltaEProgramObject) {
_deltaEProgramObject.reset();
_deltaEProgramObject = nullptr;
}
if (_irradianceFinalProgramObject) {
_irradianceFinalProgramObject.reset();
_irradianceFinalProgramObject = nullptr;
}
return;
}
}
_deltaSProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_deltaSProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
if (_deltaSSupTermsProgramObject == nullptr) {
_deltaSSupTermsProgramObject = ghoul::opengl::ProgramObject::Build(
"deltaSSUPTermsCalcProgram",
"${MODULE_ATMOSPHERE}/shaders/deltaS_sup_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/deltaS_sup_calc_fs.glsl",
"${MODULE_ATMOSPHERE}/shaders/deltaS_sup_calc_gs.glsl");
if (!_deltaSSupTermsProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject.reset();
_irradianceSupTermsProgramObject = nullptr;
}
if (_inScatteringProgramObject) {
_inScatteringProgramObject.reset();
_inScatteringProgramObject = nullptr;
}
if (_inScatteringSupTermsProgramObject) {
_inScatteringSupTermsProgramObject.reset();
_inScatteringSupTermsProgramObject = nullptr;
}
if (_deltaEProgramObject) {
_deltaEProgramObject.reset();
_deltaEProgramObject = nullptr;
}
if (_irradianceFinalProgramObject) {
_irradianceFinalProgramObject.reset();
_irradianceFinalProgramObject = nullptr;
}
if (_deltaSProgramObject) {
_deltaSProgramObject.reset();
_deltaSProgramObject = nullptr;
}
return;
}
}
_deltaSSupTermsProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_deltaSSupTermsProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
//============== Delta J (Radiance Scattered) =================
if (_deltaJProgramObject == nullptr) {
_deltaJProgramObject = ghoul::opengl::ProgramObject::Build(
"deltaJCalcProgram",
"${MODULE_ATMOSPHERE}/shaders/deltaJ_calc_vs.glsl",
"${MODULE_ATMOSPHERE}/shaders/deltaJ_calc_fs.glsl",
"${MODULE_ATMOSPHERE}/shaders/deltaJ_calc_gs.glsl");
if (!_deltaJProgramObject) {
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject.reset();
_irradianceSupTermsProgramObject = nullptr;
}
if (_inScatteringProgramObject) {
_inScatteringProgramObject.reset();
_inScatteringProgramObject = nullptr;
}
if (_inScatteringSupTermsProgramObject) {
_inScatteringSupTermsProgramObject.reset();
_inScatteringSupTermsProgramObject = nullptr;
}
if (_deltaEProgramObject) {
_deltaEProgramObject.reset();
_deltaEProgramObject = nullptr;
}
if (_irradianceFinalProgramObject) {
_irradianceFinalProgramObject.reset();
_irradianceFinalProgramObject = nullptr;
}
if (_deltaSProgramObject) {
_deltaSProgramObject.reset();
_deltaSProgramObject = nullptr;
}
if (_deltaSSupTermsProgramObject) {
_deltaSSupTermsProgramObject.reset();
_deltaSSupTermsProgramObject = nullptr;
}
return;
}
}
_deltaJProgramObject->setIgnoreSubroutineUniformLocationError(IgnoreError::Yes);
_deltaJProgramObject->setIgnoreUniformLocationError(IgnoreError::Yes);
}
void AtmosphereDeferredcaster::unloadComputationPrograms() {
RenderEngine& renderEngine = OsEng.renderEngine();
if (_transmittanceProgramObject) {
_transmittanceProgramObject.reset();
_transmittanceProgramObject = nullptr;
}
if (_irradianceProgramObject) {
_irradianceProgramObject.reset();
_irradianceProgramObject = nullptr;
}
if (_irradianceSupTermsProgramObject) {
_irradianceSupTermsProgramObject.reset();
_irradianceSupTermsProgramObject = nullptr;
}
if (_inScatteringProgramObject) {
_inScatteringProgramObject.reset();
_inScatteringProgramObject = nullptr;
}
if (_inScatteringSupTermsProgramObject) {
_inScatteringSupTermsProgramObject.reset();
_inScatteringSupTermsProgramObject = nullptr;
}
if (_deltaEProgramObject) {
_deltaEProgramObject.reset();
_deltaEProgramObject = nullptr;
}
if (_irradianceFinalProgramObject) {
_irradianceFinalProgramObject.reset();
_irradianceFinalProgramObject = nullptr;
}
if (_deltaSProgramObject) {
_deltaSProgramObject.reset();
_deltaSProgramObject = nullptr;
}
if (_deltaSSupTermsProgramObject) {
_deltaSSupTermsProgramObject.reset();
_deltaSSupTermsProgramObject = nullptr;
}
if (_deltaJProgramObject) {
_deltaJProgramObject.reset();
_deltaJProgramObject = nullptr;
}
}
void AtmosphereDeferredcaster::createComputationTextures() {
//========== Create Atmosphere Tables (textures) ==============
GLenum err;
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error before creating OpenGL textures for Atmosphere computation. OpenGL error: " << errString);
}
if (!_atmosphereCalculated) {
//============== Transmittance =================
ghoul::opengl::TextureUnit transmittanceTableTextureUnit;
transmittanceTableTextureUnit.activate();
glGenTextures(1, &_transmittanceTableTexture);
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// Stopped using a buffer object for GL_PIXEL_UNPACK_BUFFER
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB32F, TRANSMITTANCE_TABLE_WIDTH,
TRANSMITTANCE_TABLE_HEIGHT, 0, GL_RGB, GL_FLOAT, nullptr);
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating Transmittance T texture for Atmosphere computation. OpenGL error: " << errString);
}
//glBindTexture(GL_TEXTURE_2D, 0);
//============== Irradiance =================
ghoul::opengl::TextureUnit irradianceTableTextureUnit;
irradianceTableTextureUnit.activate();
glGenTextures(1, &_irradianceTableTexture);
glBindTexture(GL_TEXTURE_2D, _irradianceTableTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB32F, IRRADIANCE_TABLE_WIDTH,
IRRADIANCE_TABLE_HEIGHT, 0, GL_RGB, GL_FLOAT, nullptr);
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating Irradiance E texture for Atmosphere computation. OpenGL error: " << errString);
}
//glBindTexture(GL_TEXTURE_2D, 0);
//============== InScattering =================
ghoul::opengl::TextureUnit inScatteringTableTextureUnit;
inScatteringTableTextureUnit.activate();
glGenTextures(1, &_inScatteringTableTexture);
glBindTexture(GL_TEXTURE_3D, _inScatteringTableTexture);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA32F_ARB, MU_S_SAMPLES * NU_SAMPLES,
MU_SAMPLES, R_SAMPLES, 0, GL_RGB, GL_FLOAT, nullptr);
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating InScattering S texture for Atmosphere computation. OpenGL error: " << errString);
}
//glBindTexture(GL_TEXTURE_3D, 0);
}
//============== Delta E =================
ghoul::opengl::TextureUnit deltaETableTextureUnit;
deltaETableTextureUnit.activate();
glGenTextures(1, &_deltaETableTexture);
glBindTexture(GL_TEXTURE_2D, _deltaETableTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB32F, DELTA_E_TABLE_WIDTH,
DELTA_E_TABLE_HEIGHT, 0, GL_RGB, GL_FLOAT, nullptr);
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating Irradiance Delta E texture for Atmosphere computation. OpenGL error: " << errString);
}
//glBindTexture(GL_TEXTURE_2D, 0);
//============== Delta S =================
ghoul::opengl::TextureUnit deltaSRayleighTableTextureUnit;
deltaSRayleighTableTextureUnit.activate();
glGenTextures(1, &_deltaSRayleighTableTexture);
glBindTexture(GL_TEXTURE_3D, _deltaSRayleighTableTexture);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage3D(GL_TEXTURE_3D, 0, GL_RGB32F, MU_S_SAMPLES * NU_SAMPLES,
MU_SAMPLES, R_SAMPLES, 0, GL_RGB, GL_FLOAT, nullptr);
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating Rayleigh InScattering Delta S exture for Atmosphere computation. OpenGL error: " << errString);
}
//glBindTexture(GL_TEXTURE_3D, 0);
ghoul::opengl::TextureUnit deltaSMieTableTextureUnit;
deltaSMieTableTextureUnit.activate();
glGenTextures(1, &_deltaSMieTableTexture);
glBindTexture(GL_TEXTURE_3D, _deltaSMieTableTexture);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage3D(GL_TEXTURE_3D, 0, GL_RGB32F, MU_S_SAMPLES * NU_SAMPLES,
MU_SAMPLES, R_SAMPLES, 0, GL_RGB, GL_FLOAT, nullptr);
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating Mie InScattering Delta S texture for Atmosphere computation. OpenGL error: " << errString);
}
//glBindTexture(GL_TEXTURE_3D, 0);
//============== Delta J (Radiance Scattered) =================
ghoul::opengl::TextureUnit deltaJTableTextureUnit;
deltaJTableTextureUnit.activate();
glGenTextures(1, &_deltaJTableTexture);
glBindTexture(GL_TEXTURE_3D, _deltaJTableTexture);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage3D(GL_TEXTURE_3D, 0, GL_RGB32F, MU_S_SAMPLES * NU_SAMPLES,
MU_SAMPLES, R_SAMPLES, 0, GL_RGB, GL_FLOAT, nullptr);
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating Inscattering Irradiance Delta J texture for Atmosphere computation. OpenGL error: " << errString);
}
//glBindTexture(GL_TEXTURE_3D, 0);
}
void AtmosphereDeferredcaster::deleteComputationTextures() {
// Cleaning up
glDeleteTextures(1, &_transmittanceTableTexture);
glDeleteTextures(1, &_irradianceTableTexture);
glDeleteTextures(1, &_inScatteringTableTexture);
glDeleteTextures(1, &_deltaETableTexture);
glDeleteTextures(1, &_deltaSRayleighTableTexture);
glDeleteTextures(1, &_deltaSMieTableTexture);
glDeleteTextures(1, &_deltaJTableTexture);
}
void AtmosphereDeferredcaster::deleteUnusedComputationTextures() {
glDeleteTextures(1, &_deltaETableTexture);
glDeleteTextures(1, &_deltaSRayleighTableTexture);
glDeleteTextures(1, &_deltaSMieTableTexture);
glDeleteTextures(1, &_deltaJTableTexture);
}
void AtmosphereDeferredcaster::executeCalculations(const GLuint quadCalcVAO,
const GLenum drawBuffers[1],
const GLsizei vertexSize)
{
ghoul::opengl::TextureUnit transmittanceTableTextureUnit;
ghoul::opengl::TextureUnit irradianceTableTextureUnit;
ghoul::opengl::TextureUnit inScatteringTableTextureUnit;
ghoul::opengl::TextureUnit deltaETableTextureUnit;
ghoul::opengl::TextureUnit deltaSRayleighTableTextureUnit;
ghoul::opengl::TextureUnit deltaSMieTableTextureUnit;
ghoul::opengl::TextureUnit deltaJTableTextureUnit;
// Saving current OpenGL state
bool blendEnabled = glIsEnabled(GL_BLEND);
GLint blendEquationRGB;
GLint blendEquationAlpha;
GLint blendDestAlpha;
GLint blendDestRGB;
GLint blendSrcAlpha;
GLint blendSrcRGB;
if (blendEnabled)
glDisable(GL_BLEND);
glGetIntegerv(GL_BLEND_EQUATION_RGB, &blendEquationRGB);
glGetIntegerv(GL_BLEND_EQUATION_ALPHA, &blendEquationAlpha);
glGetIntegerv(GL_BLEND_DST_ALPHA, &blendDestAlpha);
glGetIntegerv(GL_BLEND_DST_RGB, &blendDestRGB);
glGetIntegerv(GL_BLEND_SRC_ALPHA, &blendSrcAlpha);
glGetIntegerv(GL_BLEND_SRC_RGB, &blendSrcRGB);
// ===========================================================
// See Precomputed Atmosphere Scattering from Bruneton et al. paper, algorithm 4.1:
// ===========================================================
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _transmittanceTableTexture, 0);
checkFrameBufferState("_transmittanceTableTexture");
glViewport(0, 0, TRANSMITTANCE_TABLE_WIDTH, TRANSMITTANCE_TABLE_HEIGHT);
_transmittanceProgramObject->activate();
loadAtmosphereDataIntoShaderProgram(_transmittanceProgramObject);
//glClear(GL_COLOR_BUFFER_BIT);
static const float black[] = { 0.0f, 0.0f, 0.0f, 0.0f };
glClearBufferfv(GL_COLOR, 0, black);
renderQuadForCalc(quadCalcVAO, vertexSize);
#ifdef _SAVE_ATMOSPHERE_TEXTURES
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, std::string("transmittance_texture.ppm"),
TRANSMITTANCE_TABLE_WIDTH, TRANSMITTANCE_TABLE_HEIGHT);
#endif
_transmittanceProgramObject->deactivate();
GLenum err;
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing Transmittance T Table. OpenGL error: " << errString);
}
// line 2 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _deltaETableTexture, 0);
checkFrameBufferState("_deltaETableTexture");
glViewport(0, 0, DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
_irradianceProgramObject->activate();
transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
_irradianceProgramObject->setUniform("transmittanceTexture", transmittanceTableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_irradianceProgramObject);
glClear(GL_COLOR_BUFFER_BIT);
renderQuadForCalc(quadCalcVAO, vertexSize);
#ifdef _SAVE_ATMOSPHERE_TEXTURES
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, std::string("deltaE_table_texture.ppm"),
DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
#endif
_irradianceProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing Irradiance Delta E Table. OpenGL error: " << errString);
}
// line 3 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _deltaSRayleighTableTexture, 0);
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, _deltaSMieTableTexture, 0);
GLenum colorBuffers[2] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 };
glDrawBuffers(2, colorBuffers);
checkFrameBufferState("_deltaSRay and _deltaSMie TableTexture");
glViewport(0, 0, MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
_inScatteringProgramObject->activate();
transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
_inScatteringProgramObject->setUniform("transmittanceTexture", transmittanceTableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_inScatteringProgramObject);
glClear(GL_COLOR_BUFFER_BIT);
for (int layer = 0; layer < R_SAMPLES; ++layer) {
step3DTexture(_inScatteringProgramObject, layer);
renderQuadForCalc(quadCalcVAO, vertexSize);
}
#ifdef _SAVE_ATMOSPHERE_TEXTURES
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, std::string("deltaS_rayleigh_texture.ppm"),
MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
saveTextureToPPMFile(GL_COLOR_ATTACHMENT1, std::string("deltaS_mie_texture.ppm"),
MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
#endif
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, GL_TEXTURE_2D, 0, 0);
glDrawBuffers(1, drawBuffers);
_inScatteringProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing InScattering Rayleigh and Mie Delta Tables. OpenGL error: " << errString);
}
// line 4 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _irradianceTableTexture, 0);
checkFrameBufferState("_irradianceTableTexture");
glDrawBuffer(GL_COLOR_ATTACHMENT0);
glViewport(0, 0, DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
_deltaEProgramObject->activate();
//_deltaEProgramObject->setUniform("line", 4);
deltaETableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _deltaETableTexture);
_deltaEProgramObject->setUniform("deltaETexture", deltaETableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_deltaEProgramObject);
glClear(GL_COLOR_BUFFER_BIT);
renderQuadForCalc(quadCalcVAO, vertexSize);
#ifdef _SAVE_ATMOSPHERE_TEXTURES
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, std::string("irradiance_texture.ppm"),
DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
#endif
_deltaEProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing Irradiance E Table. OpenGL error: " << errString);
}
// line 5 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _inScatteringTableTexture, 0);
checkFrameBufferState("_inScatteringTableTexture");
glViewport(0, 0, MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
_deltaSProgramObject->activate();
deltaSRayleighTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSRayleighTableTexture);
deltaSMieTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSMieTableTexture);
_deltaSProgramObject->setUniform("deltaSRTexture", deltaSRayleighTableTextureUnit);
_deltaSProgramObject->setUniform("deltaSMTexture", deltaSMieTableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_deltaSProgramObject);
glClear(GL_COLOR_BUFFER_BIT);
for (int layer = 0; layer < R_SAMPLES; ++layer) {
step3DTexture(_deltaSProgramObject, layer, false);
renderQuadForCalc(quadCalcVAO, vertexSize);
}
#ifdef _SAVE_ATMOSPHERE_TEXTURES
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, std::string("S_texture.ppm"),
MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
#endif
_deltaSProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing InScattering S Table. OpenGL error: " << errString);
}
// loop in line 6 in algorithm 4.1
for (int scatteringOrder = 2; scatteringOrder <= 4; ++scatteringOrder) {
// line 7 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _deltaJTableTexture, 0);
checkFrameBufferState("_deltaJTableTexture");
glViewport(0, 0, MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
_deltaJProgramObject->activate();
if (scatteringOrder == 2)
_deltaJProgramObject->setUniform("firstIteraction", 1);
else
_deltaJProgramObject->setUniform("firstIteraction", 0);
transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
_deltaJProgramObject->setUniform("transmittanceTexture", transmittanceTableTextureUnit);
deltaETableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _deltaETableTexture);
_deltaJProgramObject->setUniform("deltaETexture", deltaETableTextureUnit);
deltaSRayleighTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSRayleighTableTexture);
_deltaJProgramObject->setUniform("deltaSRTexture", deltaSRayleighTableTextureUnit);
deltaSMieTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSMieTableTexture);
_deltaJProgramObject->setUniform("deltaSMTexture", deltaSMieTableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_deltaJProgramObject);
for (int layer = 0; layer < R_SAMPLES; ++layer) {
step3DTexture(_deltaJProgramObject, layer);
renderQuadForCalc(quadCalcVAO, vertexSize);
}
#ifdef _SAVE_ATMOSPHERE_TEXTURES
std::stringstream sst;
sst << "deltaJ_texture-scattering_order-" << scatteringOrder << ".ppm";
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, sst.str(),
MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
#endif
_deltaJProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing Delta J Table (Sup. Terms). OpenGL error: " << errString);
}
// line 8 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _deltaETableTexture, 0);
checkFrameBufferState("_deltaETableTexture");
glViewport(0, 0, DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
_irradianceSupTermsProgramObject->activate();
if (scatteringOrder == 2)
_irradianceSupTermsProgramObject->setUniform("firstIteraction", (int)1);
else
_irradianceSupTermsProgramObject->setUniform("firstIteraction", (int)0);
transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
_irradianceSupTermsProgramObject->setUniform("transmittanceTexture", transmittanceTableTextureUnit);
deltaSRayleighTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSRayleighTableTexture);
_irradianceSupTermsProgramObject->setUniform("deltaSRTexture", deltaSRayleighTableTextureUnit);
deltaSMieTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSMieTableTexture);
_irradianceSupTermsProgramObject->setUniform("deltaSMTexture", deltaSMieTableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_irradianceSupTermsProgramObject);
renderQuadForCalc(quadCalcVAO, vertexSize);
#ifdef _SAVE_ATMOSPHERE_TEXTURES
sst.str(std::string());
sst << "deltaE_texture-scattering_order-" << scatteringOrder << ".ppm";
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, sst.str(),
DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
#endif
_irradianceSupTermsProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing Delta E Table (Sup. Terms). OpenGL error: " << errString);
}
// line 9 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _deltaSRayleighTableTexture, 0);
checkFrameBufferState("_deltaSRayleighTableTexture");
glViewport(0, 0, MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
_inScatteringSupTermsProgramObject->activate();
/*if (scatteringOrder == 2)
_inScatteringSupTermsProgramObject->setUniform("firstIteraction", (int)1);
else
_inScatteringSupTermsProgramObject->setUniform("firstIteraction", (int)0);*/
transmittanceTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _transmittanceTableTexture);
_inScatteringSupTermsProgramObject->setUniform("transmittanceTexture", transmittanceTableTextureUnit);
deltaJTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaJTableTexture);
_inScatteringSupTermsProgramObject->setUniform("deltaJTexture", deltaJTableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_inScatteringSupTermsProgramObject);
for (int layer = 0; layer < R_SAMPLES; ++layer) {
step3DTexture(_inScatteringSupTermsProgramObject, layer);
renderQuadForCalc(quadCalcVAO, vertexSize);
}
#ifdef _SAVE_ATMOSPHERE_TEXTURES
sst.str(std::string());
sst << "deltaS_texture-scattering_order-" << scatteringOrder << ".ppm";
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, sst.str(),
MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
#endif
_inScatteringSupTermsProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing Delta S Table (Sup. Terms). OpenGL error: " << errString);
}
glEnable(GL_BLEND);
glBlendEquationSeparate(GL_FUNC_ADD, GL_FUNC_ADD);
glBlendFuncSeparate(GL_ONE, GL_ONE, GL_ONE, GL_ONE);
// line 10 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _irradianceTableTexture, 0);
checkFrameBufferState("_irradianceTableTexture");
glViewport(0, 0, DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
_irradianceFinalProgramObject->activate();
deltaETableTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D, _deltaETableTexture);
_irradianceFinalProgramObject->setUniform("deltaETexture", deltaETableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_irradianceFinalProgramObject);
renderQuadForCalc(quadCalcVAO, vertexSize);
#ifdef _SAVE_ATMOSPHERE_TEXTURES
sst.str(std::string());
sst << "irradianceTable_order-" << scatteringOrder << ".ppm";
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, sst.str(),
DELTA_E_TABLE_WIDTH, DELTA_E_TABLE_HEIGHT);
#endif
_irradianceFinalProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing E Table (Sup. Terms). OpenGL error: " << errString);
}
// line 11 in algorithm 4.1
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _inScatteringTableTexture, 0);
checkFrameBufferState("_inScatteringTableTexture");
glViewport(0, 0, MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
_deltaSSupTermsProgramObject->activate();
deltaSRayleighTableTextureUnit.activate();
glBindTexture(GL_TEXTURE_3D, _deltaSRayleighTableTexture);
_deltaSSupTermsProgramObject->setUniform("deltaSTexture", deltaSRayleighTableTextureUnit);
loadAtmosphereDataIntoShaderProgram(_deltaSSupTermsProgramObject);
for (int layer = 0; layer < R_SAMPLES; ++layer) {
step3DTexture(_deltaSSupTermsProgramObject, layer, false);
renderQuadForCalc(quadCalcVAO, vertexSize);
}
#ifdef _SAVE_ATMOSPHERE_TEXTURES
sst.str(std::string());
sst << "inscatteringTable_order-" << scatteringOrder << ".ppm";
saveTextureToPPMFile(GL_COLOR_ATTACHMENT0, sst.str(),
MU_S_SAMPLES * NU_SAMPLES, MU_SAMPLES);
#endif
_deltaSSupTermsProgramObject->deactivate();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error computing S Table (Sup. Terms). OpenGL error: " << errString);
}
glDisable(GL_BLEND);
}
// Restores OpenGL blending state
if (blendEnabled)
glEnable(GL_BLEND);
glBlendEquationSeparate(blendEquationRGB, blendEquationAlpha);
glBlendFuncSeparate(blendSrcRGB, blendDestRGB, blendSrcAlpha, blendDestAlpha);
}
void AtmosphereDeferredcaster::preCalculateAtmosphereParam()
{
std::stringstream ss;
ss << "\n\n==== Atmosphere Values Used in Pre-Computation ====\n"
<< "Atmosphere Radius: " << _atmosphereRadius << std::endl
<< "Planet Radius: " << _atmospherePlanetRadius << std::endl
<< "Average Reflection: " << _planetAverageGroundReflectance << std::endl
<< "Rayleigh HR: " << _rayleighHeightScale << std::endl
<< "Mie HR: " << _mieHeightScale << std::endl
<< "Mie G phase constant: " << _miePhaseConstant << std::endl
<< "Mie Extinction coeff: " << glm::to_string(_mieExtinctionCoeff) << std::endl
<< "Rayleigh Scattering coeff: " << glm::to_string(_rayleighScatteringCoeff) << std::endl
<< "Mie Scattering coeff: " << glm::to_string(_mieScatteringCoeff) << std::endl;
std::cout << ss.str() << std::endl;
//==========================================================
//========= Load Shader Programs for Calculations ==========
//==========================================================
loadComputationPrograms();
GLenum err;
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error loading shader programs for Atmosphere computation. OpenGL error: " << errString);
}
//==========================================================
//============ Create Textures for Calculations ============
//==========================================================
createComputationTextures();
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating textures for Atmosphere computation. OpenGL error: " << errString);
}
// Saves current FBO first
GLint defaultFBO;
glGetIntegerv(GL_FRAMEBUFFER_BINDING, &defaultFBO);
GLint m_viewport[4];
glGetIntegerv(GL_VIEWPORT, m_viewport);
// Creates the FBO for the calculations
GLuint calcFBO;
glGenFramebuffers(1, &calcFBO);
glBindFramebuffer(GL_FRAMEBUFFER, calcFBO);
GLenum drawBuffers[1] = { GL_COLOR_ATTACHMENT0 };
glDrawBuffers(1, drawBuffers);
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errString = gluErrorString(err);
LERROR("Error creating FrameBuffer Object for Atmosphere pre-computation. OpenGL error: " << errString);
}
// Prepare for rendering/calculations
GLuint quadCalcVAO;
GLuint quadCalcVBO;
createRenderQuad(&quadCalcVAO, &quadCalcVBO, 1.0f);
// Starting Calculations...
LDEBUG("Starting precalculations for scattering effects...");
//==========================================================
//=================== Execute Calculations =================
//==========================================================
executeCalculations(quadCalcVAO, drawBuffers, 6);
deleteUnusedComputationTextures();
// Restores system state
glBindFramebuffer(GL_FRAMEBUFFER, defaultFBO);
glViewport(m_viewport[0], m_viewport[1],
m_viewport[2], m_viewport[3]);
glDeleteBuffers(1, &quadCalcVBO);
glDeleteVertexArrays(1, &quadCalcVAO);
glDeleteFramebuffers(1, &calcFBO);
LDEBUG("Ended precalculations for Atmosphere effects...");
}
void AtmosphereDeferredcaster::resetAtmosphereTextures()
{
}
void AtmosphereDeferredcaster::createRenderQuad(GLuint * vao, GLuint * vbo,
const GLfloat size) {
glGenVertexArrays(1, vao);
glGenBuffers(1, vbo);
glBindVertexArray(*vao);
glBindBuffer(GL_ARRAY_BUFFER, *vbo);
const GLfloat vertex_data[] = {
// x y z w
-size, -size, 0.0f, 1.0f,
size, size, 0.0f, 1.0f,
-size, size, 0.0f, 1.0f,
-size, -size, 0.0f, 1.0f,
size, -size, 0.0f, 1.0f,
size, size, 0.0f, 1.0f
};
glBufferData(GL_ARRAY_BUFFER, sizeof(vertex_data), vertex_data, GL_STATIC_DRAW);
glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, sizeof(GLfloat) * 4, reinterpret_cast<GLvoid*>(0));
glEnableVertexAttribArray(0);
glBindVertexArray(0);
GLenum err;
while ((err = glGetError()) != GL_NO_ERROR) {
LERROR("Error creating vertexbuffer for computation. OpenGL error: " << err);
}
}
void AtmosphereDeferredcaster::loadAtmosphereDataIntoShaderProgram(std::unique_ptr<ghoul::opengl::ProgramObject> & shaderProg) {
shaderProg->setUniform("Rg", _atmospherePlanetRadius);
shaderProg->setUniform("Rt", _atmosphereRadius);
shaderProg->setUniform("AverageGroundReflectance", _planetAverageGroundReflectance);
shaderProg->setUniform("HR", _rayleighHeightScale);
shaderProg->setUniform("betaRayleigh", _rayleighScatteringCoeff);
shaderProg->setUniform("HM", _mieHeightScale);
shaderProg->setUniform("betaMieScattering", _mieScatteringCoeff);
shaderProg->setUniform("betaMieExtinction", _mieExtinctionCoeff);
shaderProg->setUniform("mieG", _miePhaseConstant);
shaderProg->setUniform("sunRadiance", _sunRadianceIntensity);
}
void AtmosphereDeferredcaster::checkFrameBufferState(const std::string & codePosition) const {
if (glCheckFramebufferStatus(GL_DRAW_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) {
LERROR("Framework not built. " + codePosition);
GLenum fbErr = glCheckFramebufferStatus(GL_FRAMEBUFFER);
switch (fbErr) {
case GL_FRAMEBUFFER_UNDEFINED:
LERROR("Indefined framebuffer.");
break;
case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT:
LERROR("Incomplete, missing attachement.");
break;
case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:
LERROR("Framebuffer doesn't have at least one image attached to it.");
break;
case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER:
LERROR("Returned if the value of GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is GL_NONE \
for any color attachment point(s) named by GL_DRAW_BUFFERi.");
break;
case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER:
LERROR("Returned if GL_READ_BUFFER is not GL_NONE and the value of \
GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is GL_NONE for the color attachment point \
named by GL_READ_BUFFER.");
break;
case GL_FRAMEBUFFER_UNSUPPORTED:
LERROR("Returned if the combination of internal formats of the attached images \
violates an implementation - dependent set of restrictions.");
break;
case GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE:
LERROR("Returned if the value of GL_RENDERBUFFER_SAMPLES is not the same for all \
attached renderbuffers; if the value of GL_TEXTURE_SAMPLES is the not same for all \
attached textures; or , if the attached images are a mix of renderbuffers and textures, \
the value of GL_RENDERBUFFER_SAMPLES does not match the value of GL_TEXTURE_SAMPLES.");
LERROR("Returned if the value of GL_TEXTURE_FIXED_SAMPLE_LOCATIONS is not the same \
for all attached textures; or , if the attached images are a mix of renderbuffers and \
textures, the value of GL_TEXTURE_FIXED_SAMPLE_LOCATIONS is not GL_TRUE for all attached textures.");
break;
case GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS:
LERROR("Returned if any framebuffer attachment is layered, and any populated attachment \
is not layered, or if all populated color attachments are not from textures of the same target.");
break;
default:
LDEBUG("No error found checking framebuffer: " + codePosition);
break;
}
}
}
void AtmosphereDeferredcaster::renderQuadForCalc(const GLuint vao, const GLsizei numberOfVertices)
{
glBindVertexArray(vao);
glDrawArrays(GL_TRIANGLES, 0, numberOfVertices);
glBindVertexArray(0);
}
void AtmosphereDeferredcaster::step3DTexture(std::unique_ptr<ghoul::opengl::ProgramObject> & shaderProg,
const int layer, const bool doCalc)
{
// See OpenGL redbook 8th Edition page 556 for Layered Rendering
if (doCalc)
{
float earth2 = _atmospherePlanetRadius * _atmospherePlanetRadius;
float atm2 = _atmosphereRadius * _atmosphereRadius;
float diff = atm2 - earth2;
float ri = static_cast<float>(layer) / static_cast<float>(R_SAMPLES - 1);
float ri_2 = ri * ri;
float epsilon = (layer == 0) ? 0.01f : (layer == (R_SAMPLES - 1)) ? -0.001f : 0.0f;
float r = sqrtf(earth2 + ri_2 * diff) + epsilon;
float dminG = r - _atmospherePlanetRadius;
float dminT = _atmosphereRadius - r;
float dh = sqrtf(r * r - earth2);
float dH = dh + sqrtf(diff);
shaderProg->setUniform("r", r);
shaderProg->setUniform("dhdH", dminT, dH, dminG, dh);
}
shaderProg->setUniform("layer", static_cast<int>(layer));
}
void AtmosphereDeferredcaster::saveTextureToPPMFile(const GLenum color_buffer_attachment,
const std::string & fileName,
const int width, const int height) const {
std::fstream ppmFile;
ppmFile.open(fileName.c_str(), std::fstream::out);
if (ppmFile.is_open()) {
unsigned char * pixels = new unsigned char[width*height * 3];
for (int t = 0; t < width*height * 3; ++t)
pixels[t] = 255;
// check OpenGL error
GLenum err;
while ((err = glGetError()) != GL_NO_ERROR) {
const GLubyte * errorString = gluErrorString(err);
std::cout << "\n\nBefore Reading Texture from card. OpenGL error: "
<< err << " - " << errorString << std::endl;
}
if (color_buffer_attachment != GL_DEPTH_ATTACHMENT) {
glReadBuffer(color_buffer_attachment);
glReadPixels(0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, pixels);
}
else {
glReadPixels(0, 0, width, height, GL_DEPTH_COMPONENT, GL_UNSIGNED_BYTE, pixels);
}
ppmFile << "P3" << std::endl;
ppmFile << width << " " << height << std::endl;
ppmFile << "255" << std::endl;
std::cout << "\n\nFILE\n\n";
int k = 0;
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
ppmFile << (unsigned int)pixels[k] << " " << (unsigned int)pixels[k + 1] << " " << (unsigned int)pixels[k + 2] << " ";
k += 3;
}
ppmFile << std::endl;
}
delete[] pixels;
ppmFile.close();
}
}
} // openspace