Files
OpenSpace/modules/space/rendering/renderablestars.cpp
2021-03-30 22:12:53 +02:00

1618 lines
56 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2021 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/space/rendering/renderablestars.h>
#include <openspace/documentation/documentation.h>
#include <openspace/documentation/verifier.h>
#include <openspace/util/updatestructures.h>
#include <openspace/util/distanceconstants.h>
#include <openspace/engine/openspaceengine.h>
#include <openspace/engine/globals.h>
#include <openspace/rendering/renderengine.h>
#include <ghoul/filesystem/cachemanager.h>
#include <ghoul/filesystem/filesystem.h>
#include <ghoul/logging/logmanager.h>
#include <ghoul/misc/templatefactory.h>
#include <ghoul/io/texture/texturereader.h>
#include <ghoul/opengl/openglstatecache.h>
#include <ghoul/opengl/programobject.h>
#include <ghoul/opengl/texture.h>
#include <ghoul/opengl/textureunit.h>
#include <array>
#include <cstdint>
#include <filesystem>
#include <fstream>
#include <iostream>
#include <limits>
#include <type_traits>
namespace {
constexpr const char* _loggerCat = "RenderableStars";
constexpr const std::array<const char*, 17> UniformNames = {
"modelMatrix", "cameraUp", "cameraViewProjectionMatrix",
"colorOption", "magnitudeExponent", "eyePosition", "psfParamConf",
"lumCent", "radiusCent", "brightnessCent", "colorTexture",
"alphaValue", "psfTexture", "otherDataTexture", "otherDataRange",
"filterOutOfRange", "fixedColor"
};
constexpr int8_t CurrentCacheVersion = 3;
constexpr const int RenderOptionPointSpreadFunction = 0;
constexpr const int RenderOptionTexture = 1;
constexpr const int PsfMethodSpencer = 0;
constexpr const int PsfMethodMoffat = 1;
constexpr double PARSEC = 0.308567756E17;
struct ColorVBOLayout {
std::array<float, 3> position;
float value;
float luminance;
float absoluteMagnitude;
float apparentMagnitude;
};
struct VelocityVBOLayout {
std::array<float, 3> position;
float value;
float luminance;
float absoluteMagnitude;
float apparentMagnitude;
float vx; // v_x
float vy; // v_y
float vz; // v_z
};
struct SpeedVBOLayout {
std::array<float, 3> position;
float value;
float luminance;
float absoluteMagnitude;
float apparentMagnitude;
float speed;
};
struct OtherDataLayout {
std::array<float, 3> position;
float value;
float luminance;
float absoluteMagnitude;
float apparentMagnitude;
};
constexpr openspace::properties::Property::PropertyInfo SpeckFileInfo = {
"SpeckFile",
"Speck File",
"The speck file that is loaded to get the data for rendering these stars."
};
static const openspace::properties::Property::PropertyInfo ColorTextureInfo = {
"ColorMap",
"ColorBV Texture",
"The path to the texture that is used to convert from the B-V value of the star "
"to its color. The texture is used as a one dimensional lookup function."
};
constexpr openspace::properties::Property::PropertyInfo ColorOptionInfo = {
"ColorOption",
"Color Option",
"This value determines which quantity is used for determining the color of the "
"stars."
};
constexpr openspace::properties::Property::PropertyInfo OtherDataOptionInfo = {
"OtherData",
"Other Data Column",
"The index of the speck file data column that is used as the color input"
};
constexpr openspace::properties::Property::PropertyInfo OtherDataValueRangeInfo = {
"OtherDataValueRange",
"Range of the other data values",
"This value is the min/max value range that is used to normalize the other data "
"values so they can be used by the specified color map."
};
constexpr openspace::properties::Property::PropertyInfo FixedColorInfo = {
"FixedColorValue",
"Color used for fixed star colors",
"The color that should be used if the 'Fixed Color' value is used."
};
constexpr openspace::properties::Property::PropertyInfo OtherDataColorMapInfo = {
"OtherDataColorMap",
"Other Data Color Map",
"The color map that is used if the 'Other Data' rendering method is selected"
};
constexpr openspace::properties::Property::PropertyInfo FilterOutOfRangeInfo = {
"FilterOutOfRange",
"Filter Out of Range",
"Determines whether other data values outside the value range should be visible "
"or filtered away"
};
constexpr openspace::properties::Property::PropertyInfo EnableTestGridInfo = {
"EnableTestGrid",
"Enable Test Grid",
"Set it to true for rendering the test grid."
};
// Old Method
constexpr openspace::properties::Property::PropertyInfo PsfTextureInfo = {
"Texture",
"Point Spread Function Texture",
"The path to the texture that should be used as a point spread function for the "
"stars."
};
/*constexpr openspace::properties::Property::PropertyInfo ShapeTextureInfo = {
"ShapeTexture",
"Shape Texture to be convolved",
"The path to the texture that should be used as the base shape for the stars."
};*/
// PSF
constexpr openspace::properties::Property::PropertyInfo MagnitudeExponentInfo = {
"MagnitudeExponent",
"Magnitude Exponent",
"Adjust star magnitude by 10^MagnitudeExponent. "
"Stars closer than this distance are given full opacity. "
"Farther away, stars dim proportionally to the logarithm of their distance."
};
constexpr openspace::properties::Property::PropertyInfo RenderMethodOptionInfo = {
"RenderMethod",
"Render Method",
"Render method for the stars."
};
openspace::properties::PropertyOwner::PropertyOwnerInfo
UserProvidedTextureOptionInfo =
{
"UserProvidedTexture",
"User Provided Texture",
""
};
openspace::properties::PropertyOwner::PropertyOwnerInfo ParametersOwnerOptionInfo = {
"ParametersOwner",
"Parameters Options",
""
};
openspace::properties::PropertyOwner::PropertyOwnerInfo MoffatMethodOptionInfo = {
"MoffatMethodOption",
"Moffat Method",
""
};
constexpr openspace::properties::Property::PropertyInfo PSFMethodOptionInfo = {
"PSFMethodOptionInfo",
"PSF Method Option",
"Debug option for PSF main function: Spencer or Moffat."
};
constexpr openspace::properties::Property::PropertyInfo SizeCompositionOptionInfo = {
"SizeComposition",
"Size Composition Option",
"Base multiplyer for the final stars' sizes."
};
constexpr openspace::properties::Property::PropertyInfo LumPercentInfo = {
"LumPercent",
"Luminosity Contribution",
"Luminosity Contribution."
};
constexpr openspace::properties::Property::PropertyInfo RadiusPercentInfo = {
"RadiusPercent",
"Radius Contribution",
"Radius Contribution."
};
constexpr openspace::properties::Property::PropertyInfo BrightnessPercentInfo = {
"BrightnessPercen",
"App Brightness Contribution",
"App Brightness Contribution."
};
openspace::properties::PropertyOwner::PropertyOwnerInfo SpencerPSFParamOwnerInfo = {
"SpencerPSFParamOwner",
"Spencer PSF Paramameters",
"PSF parameters for Spencer"
};
constexpr openspace::properties::Property::PropertyInfo P0ParamInfo = {
"P0Param",
"P0",
"P0 parameter contribution."
};
constexpr openspace::properties::Property::PropertyInfo P1ParamInfo = {
"P1Param",
"P1",
"P1 parameter contribution."
};
constexpr openspace::properties::Property::PropertyInfo P2ParamInfo = {
"P2Param",
"P2",
"P2 parameter contribution."
};
constexpr openspace::properties::Property::PropertyInfo AlphaConstInfo = {
"AlphaConst",
"Alpha",
"Empirical Alpha Constant."
};
openspace::properties::PropertyOwner::PropertyOwnerInfo MoffatPSFParamOwnerInfo = {
"MoffatPSFParam",
"Moffat PSF Parameters",
"PSF parameters for Moffat"
};
constexpr openspace::properties::Property::PropertyInfo FWHMInfo = {
"FWHM",
"FWHM",
"Moffat's FWHM"
};
constexpr openspace::properties::Property::PropertyInfo BetaInfo = {
"Beta",
"Beta",
"Moffat's Beta Constant."
};
constexpr openspace::properties::Property::PropertyInfo FadeInDistancesInfo = {
"FadeInDistances",
"Fade-In Start and End Distances",
"These values determine the initial and final distances from the center of "
"our galaxy from which the astronomical object will start and end "
"fading-in."
};
constexpr openspace::properties::Property::PropertyInfo DisableFadeInInfo = {
"DisableFadeIn",
"Disable Fade-in effect",
"Enables/Disables the Fade-in effect."
};
struct [[codegen::Dictionary(RenderableStars)]] Parameters {
// The path to the SPECK file containing information about the stars being
// rendered
std::filesystem::path speckFile [[codegen::key("File")]];
// [[codegen::verbatim(ColorTextureInfo.description)]]
std::filesystem::path colorMap;
enum class ColorOption {
Color,
Velocity,
Speed,
OtherData [[codegen::key("Other Data")]],
FixedColor [[codegen::key("Fixed Color")]]
};
// [[codegen::verbatim(ColorOptionInfo.description)]]
std::optional<ColorOption> colorOption;
// [[codegen::verbatim(OtherDataOptionInfo.description)]]
std::optional<std::string> otherData;
// [[codegen::verbatim(OtherDataColorMapInfo.description)]]
std::optional<std::string> otherDataColorMap;
// [[codegen::verbatim(FilterOutOfRangeInfo.description)]]
std::optional<bool> filterOutOfRange;
// This value specifies a value that is always filtered out of the value ranges on
// loading. This can be used to trim the dataset's automatic value range
std::optional<float> staticFilter;
// This is the value that is used to replace statically filtered values. Setting
// this value only makes sense if 'StaticFilter' is 'true', as well
std::optional<float> staticFilterReplacement;
// [[codegen::verbatim(MagnitudeExponentInfo.description)]]
std::optional<float> magnitudeExponent;
// [[codegen::verbatim(EnableTestGridInfo.description)]]
std::optional<bool> enableTestGrid;
// [[codegen::verbatim(RenderMethodOptionInfo.description)]]
std::string renderMethod;
// [[codegen::verbatim(PsfTextureInfo.description)]]
std::filesystem::path texture;
// [[codegen::verbatim(SizeCompositionOptionInfo.description)]]
std::optional<std::string> sizeComposition;
// [[codegen::verbatim(FadeInDistancesInfo.description)]]
std::optional<glm::dvec2> fadeInDistances;
// [[codegen::verbatim(DisableFadeInInfo.description)]]
std::optional<bool> distableFadeIn;
};
#include "renderablestars_codegen.cpp"
} // namespace
namespace openspace {
documentation::Documentation RenderableStars::Documentation() {
documentation::Documentation doc = codegen::doc<Parameters>();
doc.id = "space_renderablestars";
return doc;
}
RenderableStars::RenderableStars(const ghoul::Dictionary& dictionary)
: Renderable(dictionary)
, _speckFile(SpeckFileInfo)
, _colorTexturePath(ColorTextureInfo)
//, _shapeTexturePath(ShapeTextureInfo)
, _colorOption(ColorOptionInfo, properties::OptionProperty::DisplayType::Dropdown)
, _otherDataOption(
OtherDataOptionInfo,
properties::OptionProperty::DisplayType::Dropdown
)
, _otherDataColorMapPath(OtherDataColorMapInfo)
, _otherDataRange(
OtherDataValueRangeInfo,
glm::vec2(0.f, 1.f),
glm::vec2(-10.f, -10.f),
glm::vec2(10.f, 10.f)
)
, _fixedColor(FixedColorInfo, glm::vec3(1.f), glm::vec3(0.f), glm::vec3(1.f))
, _filterOutOfRange(FilterOutOfRangeInfo, false)
, _pointSpreadFunctionTexturePath(PsfTextureInfo)
, _psfMethodOption(
PSFMethodOptionInfo,
properties::OptionProperty::DisplayType::Dropdown
)
, _psfMultiplyOption(
SizeCompositionOptionInfo,
properties::OptionProperty::DisplayType::Dropdown
)
, _lumCent(LumPercentInfo, 0.5f, 0.f, 3.f)
, _radiusCent(RadiusPercentInfo, 0.5f, 0.f, 3.f)
, _brightnessCent(BrightnessPercentInfo, 0.5f, 0.f, 3.f)
, _magnitudeExponent(MagnitudeExponentInfo, 4.f, 0.f, 8.f)
, _spencerPSFParamOwner(SpencerPSFParamOwnerInfo)
, _p0Param(P0ParamInfo, 0.384f, 0.f, 1.f)
, _p1Param(P1ParamInfo, 0.478f, 0.f, 1.f)
, _p2Param(P2ParamInfo, 0.138f, 0.f, 1.f)
, _spencerAlphaConst(AlphaConstInfo, 0.02f, 0.000001f, 5.f)
, _moffatPSFParamOwner(MoffatPSFParamOwnerInfo)
, _FWHMConst(FWHMInfo, 10.4f, -100.f, 1000.f)
, _moffatBetaConst(BetaInfo, 4.765f, 0.f, 100.f)
, _renderingMethodOption(
RenderMethodOptionInfo,
properties::OptionProperty::DisplayType::Dropdown
)
, _userProvidedTextureOwner(UserProvidedTextureOptionInfo)
, _parametersOwner(ParametersOwnerOptionInfo)
, _moffatMethodOwner(MoffatMethodOptionInfo)
, _fadeInDistance(
FadeInDistancesInfo,
glm::vec2(0.f),
glm::vec2(0.f),
glm::vec2(100.f)
)
, _disableFadeInDistance(DisableFadeInInfo, true)
{
using File = ghoul::filesystem::File;
const Parameters p = codegen::bake<Parameters>(dictionary);
addProperty(_opacity);
registerUpdateRenderBinFromOpacity();
_speckFile = p.speckFile.string();
_speckFile.onChange([&]() { _speckFileIsDirty = true; });
addProperty(_speckFile);
_colorTexturePath = p.colorMap.string();
_colorTextureFile = std::make_unique<File>(_colorTexturePath);
/*_shapeTexturePath = absPath(dictionary.value<std::string>(
ShapeTextureInfo.identifier
));
_shapeTextureFile = std::make_unique<File>(_shapeTexturePath);*/
if (p.otherDataColorMap.has_value()) {
_otherDataColorMapPath = absPath(*p.otherDataColorMap);
}
_fixedColor.setViewOption(properties::Property::ViewOptions::Color, true);
addProperty(_fixedColor);
_colorOption.addOptions({
{ ColorOption::Color, "Color" },
{ ColorOption::Velocity, "Velocity" },
{ ColorOption::Speed, "Speed" },
{ ColorOption::OtherData, "Other Data" },
{ ColorOption::FixedColor, "Fixed Color" }
});
if (p.colorOption.has_value()) {
switch (*p.colorOption) {
case Parameters::ColorOption::Color:
_colorOption = ColorOption::Color;
break;
case Parameters::ColorOption::Velocity:
_colorOption = ColorOption::Velocity;
break;
case Parameters::ColorOption::Speed:
_colorOption = ColorOption::Speed;
break;
case Parameters::ColorOption::OtherData:
_colorOption = ColorOption::OtherData;
break;
case Parameters::ColorOption::FixedColor:
_colorOption = ColorOption::FixedColor;
break;
}
}
_colorOption.onChange([&] { _dataIsDirty = true; });
addProperty(_colorOption);
_colorTexturePath.onChange([&] { _colorTextureIsDirty = true; });
_colorTextureFile->setCallback([&](const File&) {
_colorTextureIsDirty = true;
});
addProperty(_colorTexturePath);
/*_shapeTexturePath.onChange([&] { _shapeTextureIsDirty = true; });
_shapeTextureFile->setCallback([&](const File&) {
_shapeTextureIsDirty = true;
});
addProperty(_shapeTexturePath);*/
_enableTestGrid = p.enableTestGrid.value_or(_enableTestGrid);
_queuedOtherData = p.otherData.value_or(_queuedOtherData);
_otherDataOption.onChange([&]() { _dataIsDirty = true; });
addProperty(_otherDataOption);
addProperty(_otherDataRange);
addProperty(_otherDataColorMapPath);
_otherDataColorMapPath.onChange([&]() { _otherDataColorMapIsDirty = true; });
_staticFilterValue = p.staticFilter;
_staticFilterReplacementValue =
p.staticFilterReplacement.value_or(_staticFilterReplacementValue);
addProperty(_filterOutOfRange);
_renderingMethodOption.addOption(
RenderOptionPointSpreadFunction,
"Point Spread Function Based"
);
_renderingMethodOption.addOption(RenderOptionTexture, "Textured Based");
addProperty(_renderingMethodOption);
if (p.renderMethod == "PSF") {
_renderingMethodOption = RenderOptionPointSpreadFunction;
}
else if (p.renderMethod == "Texture Based") {
_renderingMethodOption = RenderOptionTexture;
}
_pointSpreadFunctionTexturePath = absPath(p.texture.string());
_pointSpreadFunctionFile = std::make_unique<File>(_pointSpreadFunctionTexturePath);
_pointSpreadFunctionTexturePath.onChange([&]() {
_pointSpreadFunctionTextureIsDirty = true;
});
_pointSpreadFunctionFile->setCallback([&](const File&) {
_pointSpreadFunctionTextureIsDirty = true;
});
_userProvidedTextureOwner.addProperty(_pointSpreadFunctionTexturePath);
_psfMethodOption.addOption(PsfMethodSpencer, "Spencer's Function");
_psfMethodOption.addOption(PsfMethodMoffat, "Moffat's Function");
_psfMethodOption = PsfMethodSpencer;
_psfMethodOption.onChange([&]() { renderPSFToTexture(); });
_parametersOwner.addProperty(_psfMethodOption);
_psfMultiplyOption.addOption(0, "Use Star's Apparent Brightness");
_psfMultiplyOption.addOption(1, "Use Star's Luminosity and Size");
_psfMultiplyOption.addOption(2, "Luminosity, Size, App Brightness");
_psfMultiplyOption.addOption(3, "Absolute Magnitude");
_psfMultiplyOption.addOption(4, "Apparent Magnitude");
_psfMultiplyOption.addOption(5, "Distance Modulus");
if (p.sizeComposition.has_value()) {
if (*p.sizeComposition == "App Brightness") {
_psfMultiplyOption = 0;
}
else if (*p.sizeComposition == "Lum and Size") {
_psfMultiplyOption = 1;
}
else if (*p.sizeComposition == "Lum, Size and App Brightness") {
_psfMultiplyOption = 2;
}
else if (*p.sizeComposition == "Abs Magnitude") {
_psfMultiplyOption = 3;
}
else if (*p.sizeComposition == "App Maginitude") {
_psfMultiplyOption = 4;
}
else if (*p.sizeComposition == "Distance Modulus") {
_psfMultiplyOption = 5;
}
}
else {
_psfMultiplyOption = 5;
}
_parametersOwner.addProperty(_psfMultiplyOption);
_parametersOwner.addProperty(_lumCent);
_parametersOwner.addProperty(_radiusCent);
_parametersOwner.addProperty(_brightnessCent);
_magnitudeExponent = p.magnitudeExponent.value_or(_magnitudeExponent);
_parametersOwner.addProperty(_magnitudeExponent);
auto renderPsf = [&]() { renderPSFToTexture(); };
_spencerPSFParamOwner.addProperty(_p0Param);
_p0Param.onChange(renderPsf);
_spencerPSFParamOwner.addProperty(_p1Param);
_p1Param.onChange(renderPsf);
_spencerPSFParamOwner.addProperty(_p2Param);
_p2Param.onChange(renderPsf);
_spencerPSFParamOwner.addProperty(_spencerAlphaConst);
_spencerAlphaConst.onChange(renderPsf);
_moffatPSFParamOwner.addProperty(_FWHMConst);
_FWHMConst.onChange(renderPsf);
_moffatPSFParamOwner.addProperty(_moffatBetaConst);
_moffatBetaConst.onChange(renderPsf);
_parametersOwner.addPropertySubOwner(_spencerPSFParamOwner);
_parametersOwner.addPropertySubOwner(_moffatPSFParamOwner);
addPropertySubOwner(_userProvidedTextureOwner);
addPropertySubOwner(_parametersOwner);
addPropertySubOwner(_moffatMethodOwner);
if (p.fadeInDistances.has_value()) {
glm::vec2 v = *p.fadeInDistances;
_fadeInDistance = v;
_disableFadeInDistance = false;
addProperty(_fadeInDistance);
addProperty(_disableFadeInDistance);
}
}
RenderableStars::~RenderableStars() {}
bool RenderableStars::isReady() const {
return _program && _pointSpreadFunctionTexture;
}
void RenderableStars::initializeGL() {
_program = global::renderEngine->buildRenderProgram(
"Star",
absPath("${MODULE_SPACE}/shaders/star_vs.glsl"),
absPath("${MODULE_SPACE}/shaders/star_fs.glsl"),
absPath("${MODULE_SPACE}/shaders/star_ge.glsl")
);
ghoul::opengl::updateUniformLocations(*_program, _uniformCache, UniformNames);
loadData();
if (!_queuedOtherData.empty()) {
auto it = std::find(_dataNames.begin(), _dataNames.end(), _queuedOtherData);
if (it == _dataNames.end()) {
LERROR(fmt::format("Could not find other data column {}", _queuedOtherData));
}
else {
_otherDataOption = static_cast<int>(std::distance(_dataNames.begin(), it));
_queuedOtherData.clear();
}
}
_speckFileIsDirty = false;
LDEBUG("Creating Polygon Texture");
glGenVertexArrays(1, &_psfVao);
glGenBuffers(1, &_psfVbo);
glBindVertexArray(_psfVao);
glBindBuffer(GL_ARRAY_BUFFER, _psfVbo);
const GLfloat vertexData[] = {
//x y s t
-1.f, -1.f, 0.f, 0.f,
1.f, 1.f, 1.f, 1.f,
-1.f, 1.f, 0.f, 1.f,
-1.f, -1.f, 0.f, 0.f,
1.f, -1.f, 1.f, 0.f,
1.f, 1.f, 1.f, 1.f
};
glBufferData(GL_ARRAY_BUFFER, sizeof(vertexData), vertexData, GL_STATIC_DRAW);
glVertexAttribPointer(
0,
4,
GL_FLOAT,
GL_FALSE,
sizeof(GLfloat) * 4,
nullptr
);
glEnableVertexAttribArray(0);
glBindVertexArray(0);
glGenTextures(1, &_psfTexture);
glBindTexture(GL_TEXTURE_2D, _psfTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// Stopped using a buffer object for GL_PIXEL_UNPACK_BUFFER
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage2D(
GL_TEXTURE_2D,
0,
GL_RGBA8,
_psfTextureSize,
_psfTextureSize,
0,
GL_RGBA,
GL_BYTE,
nullptr
);
LDEBUG("Creating Convolution Texture");
glGenTextures(1, &_convolvedTexture);
glBindTexture(GL_TEXTURE_2D, _convolvedTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// Stopped using a buffer object for GL_PIXEL_UNPACK_BUFFER
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTexImage2D(
GL_TEXTURE_2D,
0,
GL_RGBA8,
_convolvedfTextureSize,
_convolvedfTextureSize,
0,
GL_RGBA,
GL_BYTE,
nullptr
);
//loadShapeTexture();
loadPSFTexture();
renderPSFToTexture();
}
void RenderableStars::deinitializeGL() {
glDeleteBuffers(1, &_vbo);
_vbo = 0;
glDeleteVertexArrays(1, &_vao);
_vao = 0;
_colorTexture = nullptr;
//_shapeTexture = nullptr;
if (_program) {
global::renderEngine->removeRenderProgram(_program.get());
_program = nullptr;
}
}
void RenderableStars::loadPSFTexture() {
_pointSpreadFunctionTexture = nullptr;
if (!_pointSpreadFunctionTexturePath.value().empty() &&
std::filesystem::exists(_pointSpreadFunctionTexturePath.value()))
{
_pointSpreadFunctionTexture = ghoul::io::TextureReader::ref().loadTexture(
absPath(_pointSpreadFunctionTexturePath)
);
if (_pointSpreadFunctionTexture) {
LDEBUG(fmt::format(
"Loaded texture from '{}'",
absPath(_pointSpreadFunctionTexturePath)
));
_pointSpreadFunctionTexture->uploadTexture();
}
_pointSpreadFunctionTexture->setFilter(
ghoul::opengl::Texture::FilterMode::AnisotropicMipMap
);
_pointSpreadFunctionFile = std::make_unique<ghoul::filesystem::File>(
_pointSpreadFunctionTexturePath
);
_pointSpreadFunctionFile->setCallback(
[&](const ghoul::filesystem::File&) {
_pointSpreadFunctionTextureIsDirty = true;
}
);
}
_pointSpreadFunctionTextureIsDirty = false;
}
void RenderableStars::renderPSFToTexture() {
// Saves current FBO first
// GLint defaultFBO;
// defaultFBO = global::renderEngine->openglStateCache().defaultFramebuffer();
// GLint m_viewport[4];
// global::renderEngine.openglStateCache().viewPort(m_viewport);
// Creates the FBO for the calculations
GLuint psfFBO;
glGenFramebuffers(1, &psfFBO);
glBindFramebuffer(GL_FRAMEBUFFER, psfFBO);
GLenum drawBuffers[1] = { GL_COLOR_ATTACHMENT0 };
glDrawBuffers(1, drawBuffers);
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _psfTexture, 0);
glViewport(0, 0, _psfTextureSize, _psfTextureSize);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
std::unique_ptr<ghoul::opengl::ProgramObject> program =
ghoul::opengl::ProgramObject::Build(
"RenderStarPSFToTexture",
absPath("${MODULE_SPACE}/shaders/psfToTexture_vs.glsl"),
absPath("${MODULE_SPACE}/shaders/psfToTexture_fs.glsl")
);
program->activate();
constexpr const float black[] = { 0.f, 0.f, 0.f, 0.f };
glClearBufferfv(GL_COLOR, 0, black);
program->setUniform("psfMethod", _psfMethodOption.value());
program->setUniform("p0Param", _p0Param);
program->setUniform("p1Param", _p1Param);
program->setUniform("p2Param", _p2Param);
program->setUniform("alphaConst", _spencerAlphaConst);
program->setUniform("FWHM", _FWHMConst);
program->setUniform("betaConstant", _moffatBetaConst);
// Draws psf to texture
glBindVertexArray(_psfVao);
glDrawArrays(GL_TRIANGLES, 0, 6);
glBindVertexArray(0);
program->deactivate();
// JCC: Convolution is disabled while FFT is not enabled
//// Now convolves with a disc shape for final shape
//GLuint convolveFBO;
//glGenFramebuffers(1, &convolveFBO);
//glBindFramebuffer(GL_FRAMEBUFFER, convolveFBO);
//glDrawBuffers(1, drawBuffers);
//glFramebufferTexture(
// GL_FRAMEBUFFER,
// GL_COLOR_ATTACHMENT0,
// _convolvedTexture,
// 0
//);
//glViewport(0, 0, _convolvedfTextureSize, _convolvedfTextureSize);
//std::unique_ptr<ghoul::opengl::ProgramObject> programConvolve =
// ghoul::opengl::ProgramObject::Build("ConvolvePSFandStarShape",
// absPath("${MODULE_SPACE}/shaders/convolution_vs.glsl"),
// absPath("${MODULE_SPACE}/shaders/convolution_fs.glsl")
// );
//programConvolve->activate();
//glClearBufferfv(GL_COLOR, 0, black);
//ghoul::opengl::TextureUnit psfTextureUnit;
//psfTextureUnit.activate();
//glBindTexture(GL_TEXTURE_2D, _psfTexture);
//programConvolve->setUniform("psfTexture", psfTextureUnit);
//
//ghoul::opengl::TextureUnit shapeTextureUnit;
//shapeTextureUnit.activate();
//_shapeTexture->bind();
//programConvolve->setUniform("shapeTexture", shapeTextureUnit);
//programConvolve->setUniform("psfTextureSize", _psfTextureSize);
//programConvolve->setUniform(
// "convolvedfTextureSize",
// _convolvedfTextureSize
//);
//// Convolves to texture
//glBindVertexArray(_psfVao);
//glDrawArrays(GL_TRIANGLES, 0, 6);
//glBindVertexArray(0);
//programConvolve->deactivate();
//// Restores system state
//glBindFramebuffer(GL_FRAMEBUFFER, defaultFBO);
//glViewport(
// m_viewport[0],
// m_viewport[1],
// m_viewport[2],
// m_viewport[3]
//);
//glDeleteFramebuffers(1, &psfFBO);
//glDeleteFramebuffers(1, &convolveFBO);
// Restores OpenGL blending state
global::renderEngine->openglStateCache().resetBlendState();
}
void RenderableStars::render(const RenderData& data, RendererTasks&) {
if (_fullData.empty()) {
return;
}
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
glDepthMask(false);
_program->activate();
glm::dvec3 eyePosition = glm::dvec3(
glm::inverse(data.camera.combinedViewMatrix()) * glm::dvec4(0.0, 0.0, 0.0, 1.0)
);
_program->setUniform(_uniformCache.eyePosition, eyePosition);
glm::dvec3 cameraUp = data.camera.lookUpVectorWorldSpace();
_program->setUniform(_uniformCache.cameraUp, cameraUp);
glm::dmat4 modelMatrix =
glm::translate(glm::dmat4(1.0), data.modelTransform.translation) *
glm::dmat4(data.modelTransform.rotation) *
glm::scale(glm::dmat4(1.0), data.modelTransform.scale);
glm::dmat4 projectionMatrix = glm::dmat4(data.camera.projectionMatrix());
glm::dmat4 cameraViewProjectionMatrix = projectionMatrix *
data.camera.combinedViewMatrix();
_program->setUniform(_uniformCache.modelMatrix, modelMatrix);
_program->setUniform(
_uniformCache.cameraViewProjectionMatrix,
cameraViewProjectionMatrix
);
_program->setUniform(_uniformCache.colorOption, _colorOption);
_program->setUniform(_uniformCache.magnitudeExponent, _magnitudeExponent);
_program->setUniform(_uniformCache.psfParamConf, _psfMultiplyOption.value());
_program->setUniform(_uniformCache.lumCent, _lumCent);
_program->setUniform(_uniformCache.radiusCent, _radiusCent);
_program->setUniform(_uniformCache.brightnessCent, _brightnessCent);
if (_colorOption == ColorOption::FixedColor) {
if (_uniformCache.fixedColor == -1) {
_uniformCache.fixedColor = _program->uniformLocation("fixedColor");
}
_program->setUniform(_uniformCache.fixedColor, _fixedColor);
}
float fadeInVariable = 1.f;
if (!_disableFadeInDistance) {
float distCamera = static_cast<float>(glm::length(data.camera.positionVec3()));
const glm::vec2 fadeRange = _fadeInDistance;
const double a = 1.f / ((fadeRange.y - fadeRange.x) * PARSEC);
const double b = -(fadeRange.x / (fadeRange.y - fadeRange.x));
const double funcValue = a * distCamera + b;
fadeInVariable *= static_cast<float>(funcValue > 1.f ? 1.f : funcValue);
_program->setUniform(_uniformCache.alphaValue, _opacity * fadeInVariable);
}
else {
_program->setUniform(_uniformCache.alphaValue, _opacity);
}
ghoul::opengl::TextureUnit psfUnit;
psfUnit.activate();
if (_renderingMethodOption.value() == 0) { // PSF Based Methods
glBindTexture(GL_TEXTURE_2D, _psfTexture);\
// Convolutioned texture
//glBindTexture(GL_TEXTURE_2D, _convolvedTexture);
}
else if (_renderingMethodOption.value() == 1) { // Textured based Method
_pointSpreadFunctionTexture->bind();
}
_program->setUniform(_uniformCache.psfTexture, psfUnit);
ghoul::opengl::TextureUnit colorUnit;
if (_colorTexture) {
colorUnit.activate();
_colorTexture->bind();
_program->setUniform(_uniformCache.colorTexture, colorUnit);
}
ghoul::opengl::TextureUnit otherDataUnit;
if (_colorOption == ColorOption::OtherData && _otherDataColorMapTexture) {
otherDataUnit.activate();
_otherDataColorMapTexture->bind();
_program->setUniform(_uniformCache.otherDataTexture, otherDataUnit);
}
else {
// We need to set the uniform to something, or the shader doesn't work
_program->setUniform(_uniformCache.otherDataTexture, colorUnit);
}
// Same here, if we don't set this value, the rendering disappears even if we don't
// use this color mode --- abock 2018-11-19
_program->setUniform(_uniformCache.otherDataRange, _otherDataRange);
_program->setUniform(_uniformCache.filterOutOfRange, _filterOutOfRange);
glBindVertexArray(_vao);
const GLsizei nStars = static_cast<GLsizei>(_fullData.size() / _nValuesPerStar);
glDrawArrays(GL_POINTS, 0, nStars);
glBindVertexArray(0);
_program->deactivate();
// Restores OpenGL blending state
global::renderEngine->openglStateCache().resetBlendState();
global::renderEngine->openglStateCache().resetDepthState();
}
void RenderableStars::update(const UpdateData&) {
if (_speckFileIsDirty) {
loadData();
_speckFileIsDirty = false;
_dataIsDirty = true;
}
if (_fullData.empty()) {
return;
}
if (_dataIsDirty) {
const int value = _colorOption;
LDEBUG("Regenerating data");
createDataSlice(ColorOption(value));
int size = static_cast<int>(_slicedData.size());
if (_vao == 0) {
glGenVertexArrays(1, &_vao);
}
if (_vbo == 0) {
glGenBuffers(1, &_vbo);
}
glBindVertexArray(_vao);
glBindBuffer(GL_ARRAY_BUFFER, _vbo);
glBufferData(
GL_ARRAY_BUFFER,
size * sizeof(GLfloat),
_slicedData.data(),
GL_STATIC_DRAW
);
GLint positionAttrib = _program->attributeLocation("in_position");
// bvLumAbsMagAppMag = bv color, luminosity, abs magnitude and app magnitude
GLint bvLumAbsMagAppMagAttrib = _program->attributeLocation(
"in_bvLumAbsMagAppMag"
);
const size_t nStars = _fullData.size() / _nValuesPerStar;
const size_t nValues = _slicedData.size() / nStars;
GLsizei stride = static_cast<GLsizei>(sizeof(GLfloat) * nValues);
glEnableVertexAttribArray(positionAttrib);
glEnableVertexAttribArray(bvLumAbsMagAppMagAttrib);
const int colorOption = _colorOption;
switch (colorOption) {
case ColorOption::Color:
case ColorOption::FixedColor:
glVertexAttribPointer(
positionAttrib,
3,
GL_FLOAT,
GL_FALSE,
stride,
nullptr // = offsetof(ColorVBOLayout, position)
);
glVertexAttribPointer(
bvLumAbsMagAppMagAttrib,
4,
GL_FLOAT,
GL_FALSE,
stride,
reinterpret_cast<void*>(offsetof(ColorVBOLayout, value))
);
break;
case ColorOption::Velocity:
{
glVertexAttribPointer(
positionAttrib,
3,
GL_FLOAT,
GL_FALSE,
stride,
nullptr // = offsetof(VelocityVBOLayout, position)
);
glVertexAttribPointer(
bvLumAbsMagAppMagAttrib,
4,
GL_FLOAT,
GL_FALSE,
stride,
reinterpret_cast<void*>(offsetof(VelocityVBOLayout, value))
);
GLint velocityAttrib = _program->attributeLocation("in_velocity");
glEnableVertexAttribArray(velocityAttrib);
glVertexAttribPointer(
velocityAttrib,
3,
GL_FLOAT,
GL_TRUE,
stride,
reinterpret_cast<void*>(offsetof(VelocityVBOLayout, vx)) // NOLINT
);
break;
}
case ColorOption::Speed:
{
glVertexAttribPointer(
positionAttrib,
3,
GL_FLOAT,
GL_FALSE,
stride,
nullptr // = offsetof(SpeedVBOLayout, position)
);
glVertexAttribPointer(
bvLumAbsMagAppMagAttrib,
4,
GL_FLOAT,
GL_FALSE,
stride,
reinterpret_cast<void*>(offsetof(SpeedVBOLayout, value))
);
GLint speedAttrib = _program->attributeLocation("in_speed");
glEnableVertexAttribArray(speedAttrib);
glVertexAttribPointer(
speedAttrib,
1,
GL_FLOAT,
GL_TRUE,
stride,
reinterpret_cast<void*>(offsetof(SpeedVBOLayout, speed))
);
break;
}
case ColorOption::OtherData:
{
glVertexAttribPointer(
positionAttrib,
3,
GL_FLOAT,
GL_FALSE,
stride,
nullptr // = offsetof(OtherDataLayout, position)
);
glVertexAttribPointer(
bvLumAbsMagAppMagAttrib,
4,
GL_FLOAT,
GL_FALSE,
stride,
reinterpret_cast<void*>(offsetof(OtherDataLayout, value)) // NOLINT
);
}
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
_dataIsDirty = false;
}
if (_pointSpreadFunctionTextureIsDirty) {
LDEBUG("Reloading Point Spread Function texture");
loadPSFTexture();
}
if (_colorTextureIsDirty) {
LDEBUG("Reloading Color Texture");
_colorTexture = nullptr;
if (_colorTexturePath.value() != "") {
_colorTexture = ghoul::io::TextureReader::ref().loadTexture(
absPath(_colorTexturePath)
);
if (_colorTexture) {
LDEBUG(fmt::format(
"Loaded texture from '{}'",
absPath(_colorTexturePath)
));
_colorTexture->uploadTexture();
}
_colorTextureFile = std::make_unique<ghoul::filesystem::File>(
_colorTexturePath
);
_colorTextureFile->setCallback(
[&](const ghoul::filesystem::File&) { _colorTextureIsDirty = true; }
);
}
_colorTextureIsDirty = false;
}
//loadShapeTexture();
if (_otherDataColorMapIsDirty) {
LDEBUG("Reloading Color Texture");
_otherDataColorMapTexture = nullptr;
if (!_otherDataColorMapPath.value().empty()) {
_otherDataColorMapTexture = ghoul::io::TextureReader::ref().loadTexture(
absPath(_otherDataColorMapPath)
);
if (_otherDataColorMapTexture) {
LDEBUG(fmt::format(
"Loaded texture from '{}'",
absPath(_otherDataColorMapPath)
));
_otherDataColorMapTexture->uploadTexture();
}
}
_otherDataColorMapIsDirty = false;
}
if (_program->isDirty()) {
_program->rebuildFromFile();
ghoul::opengl::updateUniformLocations(*_program, _uniformCache, UniformNames);
}
}
/*
void RenderableStars::loadShapeTexture() {
if (_shapeTextureIsDirty) {
LDEBUG("Reloading Shape Texture");
_shapeTexture = nullptr;
if (_shapeTexturePath.value() != "") {
_shapeTexture = ghoul::io::TextureReader::ref().loadTexture(
absPath(_shapeTexturePath)
);
if (_shapeTexture) {
LDEBUG(fmt::format(
"Loaded texture from '{}'",
absPath(_shapeTexturePath)
));
_shapeTexture->uploadTexture();
}
_shapeTextureFile = std::make_unique<ghoul::filesystem::File>(
_shapeTexturePath
);
_shapeTextureFile->setCallback(
[&](const ghoul::filesystem::File&) { _shapeTextureIsDirty = true; }
);
}
_shapeTextureIsDirty = false;
}
}
*/
void RenderableStars::loadData() {
std::string file = absPath(_speckFile);
if (!FileSys.fileExists(file)) {
return;
}
std::string cachedFile = FileSys.cacheManager()->cachedFilename(
file,
ghoul::filesystem::CacheManager::Persistent::Yes
);
_nValuesPerStar = 0;
_slicedData.clear();
_fullData.clear();
_dataNames.clear();
bool hasCachedFile = FileSys.fileExists(cachedFile);
if (hasCachedFile) {
LINFO(fmt::format("Cached file '{}' used for Speck file '{}'",
cachedFile, file
));
bool success = loadCachedFile(cachedFile);
if (success) {
return;
}
else {
FileSys.cacheManager()->removeCacheFile(file);
// Intentional fall-through to the 'else' computation to generate the cache
// file for the next run
}
}
else {
LINFO(fmt::format("Cache for Speck file '{}' not found", file));
}
LINFO(fmt::format("Loading Speck file '{}'", file));
readSpeckFile();
LINFO("Saving cache");
saveCachedFile(cachedFile);
}
void RenderableStars::readSpeckFile() {
std::string _file = _speckFile;
std::ifstream file(_file);
if (!file.good()) {
LERROR(fmt::format("Failed to open Speck file '{}'", _file));
return;
}
// The beginning of the speck file has a header that either contains comments
// (signaled by a preceding '#') or information about the structure of the file
// (signaled by the keywords 'datavar', 'texturevar', and 'texture')
std::string line;
while (true) {
std::streampos position = file.tellg();
std::getline(file, line, '\n');
if (line[0] == '#' || line.empty()) {
continue;
}
if (line.substr(0, 7) != "datavar" &&
line.substr(0, 10) != "texturevar" &&
line.substr(0, 7) != "texture")
{
// we read a line that doesn't belong to the header, so we have to jump back
// before the beginning of the current line
if (_enableTestGrid) {
file.seekg(position - std::streamoff(8));
}
break;
}
if (line.substr(0, 7) == "datavar") {
// datavar lines are structured as follows:
// datavar # description
// where # is the index of the data variable; so if we repeatedly overwrite
// the 'nValues' variable with the latest index, we will end up with the total
// number of values (+3 since X Y Z are not counted in the Speck file index)
std::stringstream str(line);
std::string dummy;
str >> dummy;
str >> _nValuesPerStar;
std::string name;
str >> name;
_dataNames.push_back(name);
// +3 because the position x, y, z
if (name == "lum") {
_lumArrayPos = _nValuesPerStar + 3;
}
else if (name == "absmag") {
_absMagArrayPos = _nValuesPerStar + 3;
}
else if (name == "appmag") {
_appMagArrayPos = _nValuesPerStar + 3;
}
else if (name == "colorb_v") {
_bvColorArrayPos = _nValuesPerStar + 3;
}
else if (name == "vx") {
_velocityArrayPos = _nValuesPerStar + 3;
}
else if (name == "speed") {
_speedArrayPos = _nValuesPerStar + 3;
}
_nValuesPerStar += 1; // We want the number, but the index is 0 based
}
}
_nValuesPerStar += 3; // X Y Z are not counted in the Speck file indices
_otherDataOption.addOptions(_dataNames);
float minLumValue = std::numeric_limits<float>::max();
float maxLumValue = std::numeric_limits<float>::min();
do {
std::vector<float> values(_nValuesPerStar);
std::stringstream str(line);
for (int i = 0; i < _nValuesPerStar; ++i) {
str >> values[i];
}
bool nullArray = true;
for (float v : values) {
if (v != 0.0) {
nullArray = false;
break;
}
}
minLumValue = values[_lumArrayPos] < minLumValue ?
values[_lumArrayPos] : minLumValue;
maxLumValue = values[_lumArrayPos] > maxLumValue ?
values[_lumArrayPos] : maxLumValue;
if (!nullArray) {
_fullData.insert(_fullData.end(), values.begin(), values.end());
}
std::getline(file, line, '\n');
} while (!file.eof());
// Normalize Luminosity:
for (size_t i = 0; i < _fullData.size(); i += _nValuesPerStar) {
_fullData[i + _lumArrayPos] =
(_fullData[i + _lumArrayPos] - minLumValue) / (maxLumValue - minLumValue);
}
}
bool RenderableStars::loadCachedFile(const std::string& file) {
std::ifstream fileStream(file, std::ifstream::binary);
if (fileStream.good()) {
int8_t version = 0;
fileStream.read(reinterpret_cast<char*>(&version), sizeof(int8_t));
if (version != CurrentCacheVersion) {
LINFO("The format of the cached file has changed: deleting old cache");
fileStream.close();
FileSys.deleteFile(file);
return false;
}
int32_t nValues = 0;
fileStream.read(reinterpret_cast<char*>(&nValues), sizeof(int32_t));
fileStream.read(reinterpret_cast<char*>(&_nValuesPerStar), sizeof(int32_t));
fileStream.read(reinterpret_cast<char*>(&_lumArrayPos), sizeof(int32_t));
fileStream.read(reinterpret_cast<char*>(&_absMagArrayPos), sizeof(int32_t));
fileStream.read(reinterpret_cast<char*>(&_appMagArrayPos), sizeof(int32_t));
fileStream.read(reinterpret_cast<char*>(&_bvColorArrayPos), sizeof(int32_t));
fileStream.read(reinterpret_cast<char*>(&_velocityArrayPos), sizeof(int32_t));
fileStream.read(reinterpret_cast<char*>(&_speedArrayPos), sizeof(int32_t));
for (int i = 0; i < _nValuesPerStar - 3; ++i) {
uint16_t len;
fileStream.read(reinterpret_cast<char*>(&len), sizeof(uint16_t));
std::vector<char> buffer(len);
fileStream.read(buffer.data(), len);
std::string value(buffer.begin(), buffer.end());
_dataNames.push_back(value);
}
_otherDataOption.addOptions(_dataNames);
_fullData.resize(nValues);
fileStream.read(reinterpret_cast<char*>(
_fullData.data()),
nValues * sizeof(_fullData[0])
);
bool success = fileStream.good();
return success;
}
else {
LERROR(fmt::format("Error opening file '{}' for loading cache file", file));
return false;
}
}
void RenderableStars::saveCachedFile(const std::string& file) const {
std::ofstream fileStream(file, std::ofstream::binary);
if (!fileStream.good()) {
LERROR(fmt::format("Error opening file '{}' for save cache file", file));
return;
}
fileStream.write(
reinterpret_cast<const char*>(&CurrentCacheVersion),
sizeof(int8_t)
);
int32_t nValues = static_cast<int32_t>(_fullData.size());
if (nValues == 0) {
throw ghoul::RuntimeError("Error writing cache: No values were loaded");
}
fileStream.write(reinterpret_cast<const char*>(&nValues), sizeof(int32_t));
int32_t nValuesPerStar = static_cast<int32_t>(_nValuesPerStar);
fileStream.write(reinterpret_cast<const char*>(&nValuesPerStar), sizeof(int32_t));
fileStream.write(reinterpret_cast<const char*>(&_lumArrayPos), sizeof(int32_t));
fileStream.write(reinterpret_cast<const char*>(&_absMagArrayPos), sizeof(int32_t));
fileStream.write(reinterpret_cast<const char*>(&_appMagArrayPos), sizeof(int32_t));
fileStream.write(reinterpret_cast<const char*>(&_bvColorArrayPos), sizeof(int32_t));
fileStream.write(reinterpret_cast<const char*>(&_velocityArrayPos), sizeof(int32_t));
fileStream.write(reinterpret_cast<const char*>(&_speedArrayPos), sizeof(int32_t));
// -3 as we don't want to save the xyz values that are in the beginning of the file
for (int i = 0; i < _nValuesPerStar - 3; ++i) {
uint16_t len = static_cast<uint16_t>(_dataNames[i].size());
fileStream.write(reinterpret_cast<const char*>(&len), sizeof(uint16_t));
fileStream.write(_dataNames[i].c_str(), len);
}
size_t nBytes = nValues * sizeof(_fullData[0]);
fileStream.write(reinterpret_cast<const char*>(_fullData.data()), nBytes);
}
void RenderableStars::createDataSlice(ColorOption option) {
_slicedData.clear();
_otherDataRange = glm::vec2(
std::numeric_limits<float>::max(),
-std::numeric_limits<float>::max()
);
for (size_t i = 0; i < _fullData.size(); i += _nValuesPerStar) {
glm::vec3 position = glm::vec3(
_fullData[i + 0],
_fullData[i + 1],
_fullData[i + 2]
);
position *= openspace::distanceconstants::Parsec;
switch (option) {
case ColorOption::Color:
case ColorOption::FixedColor:
{
union {
ColorVBOLayout value;
std::array<float, sizeof(ColorVBOLayout) / sizeof(float)> data;
} layout;
layout.value.position = { { position[0], position[1], position[2] } };
if (_enableTestGrid) {
float sunColor = 0.650f;
layout.value.value = sunColor;// _fullData[i + 3];
}
else {
layout.value.value = _fullData[i + _bvColorArrayPos];
}
layout.value.luminance = _fullData[i + _lumArrayPos];
layout.value.absoluteMagnitude = _fullData[i + _absMagArrayPos];
layout.value.apparentMagnitude = _fullData[i + _appMagArrayPos];
_slicedData.insert(
_slicedData.end(),
layout.data.begin(),
layout.data.end());
break;
}
case ColorOption::Velocity:
{
union {
VelocityVBOLayout value;
std::array<float, sizeof(VelocityVBOLayout) / sizeof(float)> data;
} layout;
layout.value.position = { { position[0], position[1], position[2] } };
layout.value.value = _fullData[i + _bvColorArrayPos];
layout.value.luminance = _fullData[i + _lumArrayPos];
layout.value.absoluteMagnitude = _fullData[i + _absMagArrayPos];
layout.value.apparentMagnitude = _fullData[i + _appMagArrayPos];
layout.value.vx = _fullData[i + _velocityArrayPos];
layout.value.vy = _fullData[i + _velocityArrayPos + 1];
layout.value.vz = _fullData[i + _velocityArrayPos + 2];
_slicedData.insert(
_slicedData.end(),
layout.data.begin(),
layout.data.end()
);
break;
}
case ColorOption::Speed:
{
union {
SpeedVBOLayout value;
std::array<float, sizeof(SpeedVBOLayout) / sizeof(float)> data;
} layout;
layout.value.position = { { position[0], position[1], position[2] } };
layout.value.value = _fullData[i + _bvColorArrayPos];
layout.value.luminance = _fullData[i + _lumArrayPos];
layout.value.absoluteMagnitude = _fullData[i + _absMagArrayPos];
layout.value.apparentMagnitude = _fullData[i + _appMagArrayPos];
layout.value.speed = _fullData[i + _speedArrayPos];
_slicedData.insert(
_slicedData.end(),
layout.data.begin(),
layout.data.end()
);
break;
}
case ColorOption::OtherData:
{
union {
OtherDataLayout value;
std::array<float, sizeof(OtherDataLayout)> data;
} layout = {};
layout.value.position = { { position[0], position[1], position[2] } };
int index = _otherDataOption.value();
// plus 3 because of the position
layout.value.value = _fullData[i + index + 3];
if (_staticFilterValue.has_value() &&
layout.value.value == _staticFilterValue)
{
layout.value.value = _staticFilterReplacementValue;
}
glm::vec2 range = _otherDataRange.value();
range.x = std::min(range.x, layout.value.value);
range.y = std::max(range.y, layout.value.value);
_otherDataRange = range;
_otherDataRange.setMinValue(glm::vec2(range.x));
_otherDataRange.setMaxValue(glm::vec2(range.y));
layout.value.luminance = _fullData[i + _lumArrayPos];
layout.value.absoluteMagnitude = _fullData[i + _absMagArrayPos];
layout.value.apparentMagnitude = _fullData[i + _appMagArrayPos];
_slicedData.insert(
_slicedData.end(),
layout.data.begin(),
layout.data.end()
);
break;
}
}
}
}
} // namespace openspace