Files
OpenSpace/modules/globebrowsing/chunk/culling/horizonculler.cpp
Alexander Bock 4952f8f977 Code cleanup branch (#618)
* Make height map fallback layer work again
  * Add documentation to joystick button bindings
  * Removed grouped property headers
  * Add new version number constant generated by CMake
  * Make Joystick deadzone work properly
  * Change the startup date on Earth to today
  * Fix key modifier handling
  * Add debugging indices for TreeNodeDebugging
  * Fix script schedule for OsirisRex
  * Do not open Mission schedule automatically
  * Upload default projection texture automatically

  * General code cleanup
  * Fix check_style_guide warnings
  * Remove .clang-format
  * MacOS compile fixes
  * Clang analyzer fixes
2018-06-10 04:47:34 +00:00

109 lines
5.5 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2018 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/globebrowsing/chunk/culling/horizonculler.h>
#include <modules/globebrowsing/chunk/chunk.h>
#include <modules/globebrowsing/globes/renderableglobe.h>
#include <openspace/util/updatestructures.h>
#include <array>
namespace openspace::globebrowsing::culling {
bool HorizonCuller::isCullable(const Chunk& chunk, const RenderData& renderData) {
// Calculations are done in the reference frame of the globe. Hence, the camera
// position needs to be transformed with the inverse model matrix
const glm::dmat4 inverseModelTransform = chunk.owner().inverseModelTransform();
const Ellipsoid& ellipsoid = chunk.owner().ellipsoid();
const GeodeticPatch& patch = chunk.surfacePatch();
const float maxHeight = chunk.boundingHeights().max;
const glm::dvec3 globePos = glm::dvec3(0,0,0); // In model space it is 0
const double minimumGlobeRadius = ellipsoid.minimumRadius();
const glm::dvec3 cameraPos = glm::dvec3(
inverseModelTransform * glm::dvec4(renderData.camera.positionVec3(), 1)
);
const glm::dvec3 globeToCamera = cameraPos;
const Geodetic2 cameraPositionOnGlobe = ellipsoid.cartesianToGeodetic2(globeToCamera);
const Geodetic2 closestPatchPoint = patch.closestPoint(cameraPositionOnGlobe);
glm::dvec3 objectPos = ellipsoid.cartesianSurfacePosition(closestPatchPoint);
// objectPosition is closest in latlon space but not guaranteed to be closest in
// castesian coordinates. Therefore we compare it to the corners and pick the
// real closest point,
std::array<glm::dvec3, 4> corners = {
ellipsoid.cartesianSurfacePosition(chunk.surfacePatch().corner(NORTH_WEST)),
ellipsoid.cartesianSurfacePosition(chunk.surfacePatch().corner(NORTH_EAST)),
ellipsoid.cartesianSurfacePosition(chunk.surfacePatch().corner(SOUTH_WEST)),
ellipsoid.cartesianSurfacePosition(chunk.surfacePatch().corner(SOUTH_EAST))
};
for (int i = 0; i < 4; ++i) {
const double distance = glm::length(cameraPos - corners[i]);
if (distance < glm::length(cameraPos - objectPos)) {
objectPos = corners[i];
}
}
return isCullable(cameraPos, globePos, objectPos, maxHeight, minimumGlobeRadius);
}
bool HorizonCuller::isCullable(const glm::dvec3& cameraPosition,
const glm::dvec3& globePosition,
const glm::dvec3& objectPosition,
double objectBoundingSphereRadius,
double minimumGlobeRadius)
{
const double objectP = pow(length(objectPosition - globePosition), 2);
const double horizonP = pow(minimumGlobeRadius - objectBoundingSphereRadius, 2);
if (objectP < horizonP) {
return false;
}
const double cameraP = pow(length(cameraPosition - globePosition), 2);
const double minR = pow(minimumGlobeRadius, 2);
if (cameraP < minR) {
return false;
}
const double minimumAllowedDistanceToObjectFromHorizon = sqrt(objectP - horizonP);
const double distanceToHorizon = sqrt(cameraP - minR);
// Minimum allowed for the object to be occluded
const double minimumAllowedDistanceToObjectSquared =
pow(distanceToHorizon + minimumAllowedDistanceToObjectFromHorizon, 2) +
pow(objectBoundingSphereRadius, 2);
const double distanceToObjectSquared = pow(
length(objectPosition - cameraPosition),
2
);
return distanceToObjectSquared > minimumAllowedDistanceToObjectSquared;
}
} // namespace openspace::globebrowsing::culling