Files
OpenSpace/modules/base/rendering/renderabletrailorbit.cpp
Alexander Bock 19f8e30813 Change RenderableModel "Rotation.ModelTransform" to "ModelTransform"
Add Property descriptions to the documentation file
Remove update method from StaticTranslation
Remove spelling error in RenderableGlobe
Remove rotation from renderablemodel projection
Fix setting the Origin through the GUI
Reorder Optional and documentation arguments for DocumentationEntry, and making Optional a non-optional argument
2017-07-27 00:22:17 -04:00

461 lines
19 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2017 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/base/rendering/renderabletrailorbit.h>
#include <openspace/documentation/documentation.h>
#include <openspace/documentation/verifier.h>
#include <openspace/scene/translation.h>
#include <openspace/util/updatestructures.h>
#include <ghoul/opengl/programobject.h>
#include <numeric>
// This class is using a VBO ring buffer + a constantly updated point as follows:
// Structure of the array with a _resolution of 16. FF denotes the floating position that
// is updated every frame:
// ---------------------------------------------------------------------------------
// | FF | | | | | | | | | | | | | | | |
// ---------------------------------------------------------------------------------
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// <------ newer in time oldest
//
// In the begining the floating value starts at 0; this means that array element 0 is
// updated and uploaded to the GPU at every frame. The FF+1 element is the newest fixed
// location and FF-1 element is the oldest fixed location (including wrapping around the
// array) with the times of _lastPointTime and _firstPointTime.
//
// If the time progresses forwards and abs(time - _lastPointTime) becomes big enough, the
// oldest point is removed and a new fixed location is added. In the ring buffer this
// would be represented as:
// ---------------------------------------------------------------------------------
// | | | | | | | | | | | | | | | | FF |
// ---------------------------------------------------------------------------------
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// <------ newer in time oldest
//
// Thus making the floating point traverse backwards through the array and element 0 being
// the newest fixed point. If the time processes backwards, the floating point moves
// towards the upper areas of the array instead.
// In both cases, only the values that have been changed will be uploaded to the GPU.
//
// For the rendering, this is achieved by using an index buffer that is twice the size of
// the vertex buffer containing identical two sequences indexing the vertex array.
// In an example of size 8:
// ---------------------------------------------------------------------------------------
// |0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|
// ---------------------------------------------------------------------------------------
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
//
// The rendering step needs to know only the offset into the array (denoted by FF as the
// floating position above) and use the index array from the position. Since the indices
// in this array wrap around, so will the rendering of the vertices. Example:
// FF := 10
// Rendering 16 elements will 'generate' the index buffer:
// 10 11 12 13 14 15 00 01 02 03 04 05 06 07 08 09
//
//
// NB: This method was implemented without a ring buffer before by manually shifting the
// items in memory as was shown to be much slower than the current system. ---abock
namespace {
static const openspace::properties::Property::PropertyInfo PeriodInfo = {
"Period",
"Period (in days)",
"The objects period, i.e. the length of its orbit around the parent object given "
"in (Earth) days. In the case of Earth, this would be a sidereal year "
"(=365.242 days). If this values is specified as multiples of the period, it is "
"possible to show the effects of precession."
};
static const openspace::properties::Property::PropertyInfo ResolutionInfo = {
"Resolution",
"Number of samples along the orbit",
"The number of samples along the orbit. This determines the resolution of the "
"trail; the tradeoff being that a higher resolution is able to resolve more "
"detail, but will take more resources while rendering, too. The higher, the "
"smoother the trail, but also more memory will be used."
};
} // namespace
namespace openspace {
documentation::Documentation RenderableTrailOrbit::Documentation() {
using namespace documentation;
documentation::Documentation doc {
"RenderableTrailOrbit",
"base_renderable_renderabletrailorbit",
{
{
PeriodInfo.identifier,
new DoubleVerifier,
Optional::No,
PeriodInfo.description
},
{
ResolutionInfo.identifier,
new IntVerifier,
Optional::No,
ResolutionInfo.description
}
}
};
// Insert the parents documentation entries until we have a verifier that can deal
// with class hierarchy
documentation::Documentation parentDoc = RenderableTrail::Documentation();
doc.entries.insert(
doc.entries.end(),
parentDoc.entries.begin(),
parentDoc.entries.end()
);
return doc;
}
RenderableTrailOrbit::RenderableTrailOrbit(const ghoul::Dictionary& dictionary)
: RenderableTrail(dictionary)
, _period(PeriodInfo, 0.0, 0.0, 1e9)
, _resolution(ResolutionInfo, 10000, 1, 1000000)
, _needsFullSweep(true)
, _indexBufferDirty(true)
, _previousTime(0)
{
documentation::testSpecificationAndThrow(
Documentation(),
dictionary,
"RenderableTrailOrbit"
);
_translation->onParameterChange([this](){
_needsFullSweep = true;
});
// Period is in days
using namespace std::chrono;
const long long sph = duration_cast<seconds>(hours(24)).count();
_period = dictionary.value<double>(PeriodInfo.identifier) * sph;
_period.onChange([&] { _needsFullSweep = true; _indexBufferDirty = true; });
addProperty(_period);
_resolution = static_cast<int>(dictionary.value<double>(ResolutionInfo.identifier));
_resolution.onChange([&] { _needsFullSweep = true; _indexBufferDirty = true; });
addProperty(_resolution);
// We store the vertices with (excluding the wrapping) decending temporal order
_primaryRenderInformation.sorting = RenderInformation::VertexSorting::NewestFirst;
}
bool RenderableTrailOrbit::initialize() {
bool res = RenderableTrail::initialize();
glGenVertexArrays(1, &_primaryRenderInformation._vaoID);
glGenBuffers(1, &_primaryRenderInformation._vBufferID);
glGenBuffers(1, &_primaryRenderInformation._iBufferID);
return res;
}
bool RenderableTrailOrbit::deinitialize() {
glDeleteVertexArrays(1, &_primaryRenderInformation._vaoID);
glDeleteBuffers(1, &_primaryRenderInformation._vBufferID);
glDeleteBuffers(1, &_primaryRenderInformation._iBufferID);
return RenderableTrail::deinitialize();
}
void RenderableTrailOrbit::update(const UpdateData& data) {
// Overview:
// 1. Update trails
// 2. Update floating position
// 3. Determine which parts of the array to upload and upload the data
// 1
// Update the trails; the report contains whether any of the other values has been
// touched and if so, how many
UpdateReport report = updateTrails(data);
// 2
// Write the current location into the floating position
glm::vec3 p = _translation->position(data.time.j2000Seconds());
_vertexArray[_primaryRenderInformation.first] = { p.x, p.y, p.z };
glBindVertexArray(_primaryRenderInformation._vaoID);
glBindBuffer(GL_ARRAY_BUFFER, _primaryRenderInformation._vBufferID);
// 3
if (!report.needsUpdate) {
// If no other values have been touched, we only need to upload the floating value
glBufferSubData(
GL_ARRAY_BUFFER,
_primaryRenderInformation.first * sizeof(TrailVBOLayout),
sizeof(TrailVBOLayout),
_vertexArray.data() + _primaryRenderInformation.first
);
}
else {
// Otherwise we need to check how many values have been changed
if (report.nUpdated == UpdateReport::All) {
// If all of the values have been invalidated, we need to upload the entire
// array
glBufferData(
GL_ARRAY_BUFFER,
_vertexArray.size() * sizeof(TrailVBOLayout),
_vertexArray.data(),
GL_STREAM_DRAW
);
if (_indexBufferDirty) {
// We only need to upload the index buffer if it has been invalidated
// by changing the number of values we want to represent
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _primaryRenderInformation._iBufferID);
glBufferData(
GL_ELEMENT_ARRAY_BUFFER,
_indexArray.size() * sizeof(unsigned int),
_indexArray.data(),
GL_STATIC_DRAW
);
_indexBufferDirty = false;
}
}
else {
// The lambda expression that will upload parts of the array starting at
// begin and containing length number of elements
auto upload = [this](int begin, int length) {
glBufferSubData(
GL_ARRAY_BUFFER,
begin * sizeof(TrailVBOLayout),
sizeof(TrailVBOLayout) * length,
_vertexArray.data() + begin
);
};
// Only update the changed ones
// Since we are using a ring buffer, the number of updated needed might be
// bigger than our current points, which means we have to split the upload
// into two calls.
if (report.nUpdated > 0) {
// deltaT is positive, so the pointer is moving backwards and update has
// to happen towards the front
// Starting index
int i = _primaryRenderInformation.first;
// Number of values
int n = report.nUpdated + 1; // +1 for the floating position
// Total size of the array
int s = _primaryRenderInformation.count;
if (i + n <= s) {
// The current index is small enough to just use one upload call
upload(i, n);
}
else {
// The current index is too close to the wrap around part, so we need
// to split the upload into two parts:
// 1. from the current index to the end of the array
// 2. the rest starting from the beginning of the array
int first = s - i;
int second = n - first;
upload(i, first); // 1
upload(0, second); // 2
}
}
else {
// deltaT is negative, so the pointer is moving forwards
// The current index
int i = _primaryRenderInformation.first;
// Number of values
int n = std::abs(report.nUpdated) + 1; // +1 for the floating position
// Total size of the array
int s = _primaryRenderInformation.count;
if (i + 1 >= n) {
// The current index is big enough to fit everything into one call
upload(i+1 - n, n);
}
else {
// The current index is too close to the beginning of the array, so we
// need to split the upload into two parts:
// 1. from the beginning of the array to the current index
// 2. filling the back of the array with the rest
int b = n - (i + 1);
upload(0, i + 1); // 1
upload(s-b, b); // 2
}
}
}
}
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
glBindVertexArray(0);
_previousTime = data.time.j2000Seconds();
}
RenderableTrailOrbit::UpdateReport RenderableTrailOrbit::updateTrails(
const UpdateData& data)
{
if (_needsFullSweep) {
fullSweep(data.time.j2000Seconds());
return { true, UpdateReport::All } ;
}
const double Epsilon = 1e-7;
// When time stands still (at the iron hill), we don't need to perform any work
if (std::abs(data.time.j2000Seconds() - _previousTime) < Epsilon) {
return { false, 0 };
}
double secondsPerPoint = _period / (_resolution - 1);
// How much time has passed since the last permanent point
double delta = data.time.j2000Seconds() - _lastPointTime;
// We'd like to test for equality with 0 here, but due to rounding issues, we won't
// get there. If this check is not here, we will trigger the positive or negative
// branch below even though we don't have to
//
// This might become a bigger issue if we are starting to look at very short time
// intervals
if (std::abs(delta) < Epsilon) {
return { false, 0 };
}
if (delta > 0.0) {
// Check whether we need to drop a new permanent point. This is only the case if
// enough (> secondsPerPoint) time has passed since the last permanent point
if (std::abs(delta) < secondsPerPoint) {
return { false, 0 };
}
// See how many points we need to drop
int nNewPoints = static_cast<int>(floor(delta / secondsPerPoint));
// If we would need to generate more new points than there are total points in the
// array, it is faster to regenerate the entire array
if (nNewPoints >= _resolution) {
fullSweep(data.time.j2000Seconds());
return { true, UpdateReport::All };
}
for (int i = 0; i < nNewPoints; ++i) {
_lastPointTime += secondsPerPoint;
// Get the new permanent point and write it into the (previously) floating
// location
glm::vec3 p = _translation->position(_lastPointTime);
_vertexArray[_primaryRenderInformation.first] = { p.x, p.y, p.z };
// Move the current pointer back one step to be used as the new floating
// location
--_primaryRenderInformation.first;
// And loop around if necessary
if (_primaryRenderInformation.first < 0) {
_primaryRenderInformation.first += _primaryRenderInformation.count;
}
}
// The previously oldest permanent point has been moved nNewPoints steps into the
// future
_firstPointTime += nNewPoints * secondsPerPoint;
return { true, nNewPoints };
}
else {
// See how many new points needs to be generated. Delta is negative, so we need
// to invert the ratio
int nNewPoints = -(static_cast<int>(floor(delta / secondsPerPoint)));
// If we would need to generate more new points than there are total points in the
// array, it is faster to regenerate the entire array
if (nNewPoints >= _resolution) {
fullSweep(data.time.j2000Seconds());
return { true, UpdateReport::All };
}
for (int i = 0; i < nNewPoints; ++i) {
_firstPointTime -= secondsPerPoint;
// Get the new permanent point and write it into the (previously) floating
// location
glm::vec3 p = _translation->position(_firstPointTime);
_vertexArray[_primaryRenderInformation.first] = { p.x, p.y, p.z };
// if we are on the upper bounds of the array, we start at 0
if (_primaryRenderInformation.first == _primaryRenderInformation.count - 1) {
// If it is at the beginning, set it to the end first
_primaryRenderInformation.first = 0;
}
else {
// Move the current pointer fowards one step to be used as the new floating
++_primaryRenderInformation.first;
}
}
// The previously youngest point has become nNewPoints steps older
_lastPointTime -= nNewPoints * secondsPerPoint;
return { true, -nNewPoints };
}
}
void RenderableTrailOrbit::fullSweep(double time) {
// Reserve the space for the vertices
_vertexArray.clear();
_vertexArray.resize(_resolution);
// The index buffer stays constant until we change the size of the array
if (_indexBufferDirty) {
// Create the index buffer and fill it with two ranges for [0, _resolution)
_indexArray.clear();
_indexArray.resize(_resolution * 2);
std::iota(_indexArray.begin(), _indexArray.begin() + _resolution, 0);
std::iota(_indexArray.begin() + _resolution, _indexArray.end(), 0);
}
_lastPointTime = time;
double secondsPerPoint = _period / (_resolution - 1);
// starting at 1 because the first position is a floating current one
for (int i = 1; i < _resolution; ++i) {
glm::vec3 p = _translation->position(time);
_vertexArray[i] = { p.x, p.y, p.z };
time -= secondsPerPoint;
}
_primaryRenderInformation.first = 0;
_primaryRenderInformation.count = _resolution;
_firstPointTime = time + secondsPerPoint;
_needsFullSweep = false;
}
} // namespace openspace