Files
OpenSpace/modules/skybrowser/src/utility.cpp
2024-03-18 22:46:17 +01:00

279 lines
11 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2024 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/skybrowser/include/utility.h>
#include <openspace/camera/camera.h>
#include <openspace/engine/globals.h>
#include <openspace/engine/windowdelegate.h>
#include <openspace/navigation/navigationhandler.h>
#include <ghoul/misc/easing.h>
#include <glm/gtx/vector_angle.hpp>
#include <cmath>
namespace {
// Galactic coordinates are projected onto the celestial sphere
// Equatorial coordinates are unit length
// Conversion spherical <-> Cartesian
// Conversion matrix - J2000 equatorial <-> galactic
// https://arxiv.org/abs/1010.3773v1
constexpr glm::dmat3 ConversionMatrix = glm::dmat3(
-0.054875539390, 0.494109453633, -0.867666135681, // col 0
-0.873437104725, -0.444829594298, -0.198076389622, // col 1
-0.483834991775, 0.746982248696, 0.455983794523 // col 2
);
} // namespace
namespace openspace::skybrowser {
// Converts from spherical coordinates in the unit of degrees to cartesian coordianates
glm::dvec3 sphericalToCartesian(const glm::dvec2& coords) {
const glm::dvec2 coordsRadians = glm::radians(coords);
const glm::dvec3 cartesian = glm::dvec3(
cos(coordsRadians.x) * cos(coordsRadians.y),
sin(coordsRadians.x) * cos(coordsRadians.y),
sin(coordsRadians.y)
);
return cartesian;
}
// Converts from cartesian coordianates to spherical in the unit of degrees
glm::dvec2 cartesianToSpherical(const glm::dvec3& coords) {
// Equatorial coordinates RA = right ascension, Dec = declination
double ra = atan2(coords.y, coords.x);
const double dec = atan2(
coords.z,
glm::sqrt((coords.x * coords.x) + (coords.y * coords.y))
);
ra = ra > 0.0 ? ra : ra + glm::two_pi<double>();
const glm::dvec2 celestialCoords = glm::dvec2(ra, dec);
return glm::degrees(celestialCoords);
}
glm::dvec3 galacticToEquatorial(const glm::dvec3& coords) {
return glm::transpose(ConversionMatrix) * glm::normalize(coords);
}
glm::dvec3 equatorialToGalactic(const glm::dvec3& coords) {
// On the unit sphere
const glm::dvec3 rGalactic = ConversionMatrix * glm::normalize(coords);
return rGalactic;
}
glm::dvec3 localCameraToScreenSpace3d(const glm::dvec3& coords) {
// Ensure that if the coord is behind the camera,
// the converted coordinate will be there too
const double zCoord = coords.z > 0.0 ? -ScreenSpaceZ : ScreenSpaceZ;
// Calculate screen space coords x and y
const double tanX = coords.x / coords.z;
const double tanY = coords.y / coords.z;
const glm::dvec3 screenSpace = glm::dvec3(zCoord * tanX, zCoord * tanY, zCoord);
return screenSpace;
}
glm::dvec3 localCameraToGalactic(const glm::dvec3& coords) {
const glm::dvec3 camPos = global::navigationHandler->camera()->positionVec3();
const glm::dvec4 coordsVec4 = glm::dvec4(coords, 1.0) ;
const glm::dmat4 camMat = glm::inverse(
global::navigationHandler->camera()->combinedViewMatrix()
);
// Subtract camera position to get the view direction
const glm::dvec3 galactic = glm::dvec3(camMat * coordsVec4) - camPos;
return glm::normalize(galactic) * CelestialSphereRadius;
}
glm::dvec3 localCameraToEquatorial(const glm::dvec3& coords) {
// Calculate the galactic coordinate of the target direction
// projected onto the celestial sphere
const glm::dvec3 camPos = global::navigationHandler->camera()->positionVec3();
const glm::dvec3 galactic = camPos + localCameraToGalactic(coords);
return galacticToEquatorial(galactic);
}
glm::dvec3 equatorialToLocalCamera(const glm::dvec3& coords) {
// Transform equatorial J2000 to galactic coord with infinite radius
const glm::dvec3 galactic = equatorialToGalactic(coords) * CelestialSphereRadius;
const glm::dvec3 localCamera = galacticToLocalCamera(galactic);
return localCamera;
}
glm::dvec3 galacticToLocalCamera(const glm::dvec3& coords) {
// Transform vector to camera's local coordinate system
const glm::dmat4 camMat = global::navigationHandler->camera()->combinedViewMatrix();
const glm::dvec3 viewDirectionLocal = camMat * glm::dvec4(coords, 1.0);
return glm::normalize(viewDirectionLocal);
}
double targetRoll(const glm::dvec3& up, const glm::dvec3& forward) {
constexpr glm::dvec3 NorthPole = glm::dvec3(0.0, 0.0, 1.0);
const glm::dvec3 upJ2000 = galacticToEquatorial(up);
const glm::dvec3 forwardJ2000 = galacticToEquatorial(forward);
const glm::dvec3 crossUpNorth = glm::cross(upJ2000, NorthPole);
const double dotNorthUp = glm::dot(NorthPole, upJ2000);
const double dotCrossUpNorthForward = glm::dot(crossUpNorth, forwardJ2000);
return glm::degrees(atan2(dotCrossUpNorthForward, dotNorthUp));
}
glm::dvec3 cameraDirectionEquatorial() {
// Get the view direction of the screen in cartesian J2000 coordinates
const glm::dvec3 camDirGalactic = cameraDirectionGalactic();
return galacticToEquatorial(camDirGalactic);
}
glm::dvec3 cameraDirectionGalactic() {
// Get the view direction of the screen in galactic coordinates
Camera* camera = global::navigationHandler->camera();
const glm::dvec3 camPos = camera->positionVec3();
const glm::dvec3 view = camera->viewDirectionWorldSpace();
const glm::dvec3 galCoord = camPos + CelestialSphereRadius * view;
return galCoord;
}
float windowRatio() {
const glm::vec2 windowRatio = global::windowDelegate->currentWindowSize();
return windowRatio.x / windowRatio.y;
}
bool isCoordinateInView(const glm::dvec3& equatorial) {
// Check if image coordinate is within current FOV
const glm::dvec3 localCamera = equatorialToLocalCamera(equatorial);
const glm::dvec3 coordsScreen = localCameraToScreenSpace3d(localCamera);
const double r = windowRatio();
const bool isCoordInView =
std::abs(coordsScreen.x) < r &&
std::abs(coordsScreen.y) < 1.f &&
coordsScreen.z < 0.f;
return isCoordInView;
}
// Transforms a pixel coordinate to a screen space coordinate
glm::vec2 pixelToScreenSpace2d(const glm::vec2& mouseCoordinate) {
const glm::vec2 size = glm::vec2(global::windowDelegate->currentWindowSize());
// Change origin to middle of the window
glm::vec2 screenSpacePos = mouseCoordinate - (size / 2.f);
// Ensure the upper right corner is positive on the y axis
screenSpacePos *= glm::vec2(1.f, -1.f);
// Transform pixel coordinates to screen space coordinates [-1,1][-ratio, ratio]
screenSpacePos /= (0.5f * size.y);
return screenSpacePos;
}
// The horizontal and vertical fov of the OpenSpace window
glm::dvec2 fovWindow() {
// OpenSpace FOV
const glm::dvec2 windowDim = glm::dvec2(global::windowDelegate->currentWindowSize());
const double ratio = windowDim.y / windowDim.x;
const double hFov = global::windowDelegate->getHorizFieldOfView();
const glm::dvec2 OpenSpaceFOV = glm::dvec2(hFov, hFov * ratio);
return OpenSpaceFOV;
}
double angleBetweenVectors(const glm::dvec3& start, const glm::dvec3& end) {
// Find smallest angle between the two vectors
const double cos = glm::dot(glm::normalize(start), glm::normalize(end));
// Ensure cos is within defined interval [-1,1]
return std::acos(std::clamp(cos, -1.0, 1.0));
}
glm::dmat4 incrementalAnimationMatrix(const glm::dvec3& start, const glm::dvec3& end,
double percentage)
{
const double smallestAngle = angleBetweenVectors(start, end);
// Calculate rotation this frame
const double rotationAngle = smallestAngle * percentage;
// Create the rotation matrix
const glm::dvec3 rotationAxis = glm::normalize(glm::cross(start, end));
return glm::rotate(rotationAngle, rotationAxis);
}
double sizeFromFov(double fov, const glm::dvec3& worldPosition) {
// Calculate the size with trigonometry
// /|
// /_| Adjacent is the horizontal line, opposite the vertical
// \ | Calculate for half the triangle first, then multiply with 2
// \|
const double adjacent = glm::length(worldPosition);
const double opposite = 2.0 * adjacent * glm::tan(glm::radians(fov * 0.5));
return opposite;
}
template <>
double Animation<double>::newValue() const {
if (!isAnimating()) {
return _goal;
}
else {
const double percentage = percentageSpent();
const double diff = (_goal - _start) * ghoul::exponentialEaseOut(percentage);
return _start + diff;
}
}
template <>
glm::dmat4 Animation<glm::dvec3>::rotationMatrix() {
if (!isAnimating()) {
return glm::dmat4(1.0);
}
const double percentage = ghoul::sineEaseInOut(percentageSpent());
const double increment = percentage - _lastPercentage;
_lastPercentage = percentage;
glm::dmat4 rotMat = skybrowser::incrementalAnimationMatrix(
glm::normalize(_start),
glm::normalize(_goal),
increment
);
return rotMat;
}
template <>
glm::dvec3 Animation<glm::dvec3>::newValue() const {
if (!isAnimating()) {
return _goal;
}
const glm::dmat4 rotMat = skybrowser::incrementalAnimationMatrix(
glm::normalize(_start),
glm::normalize(_goal),
ghoul::exponentialEaseOut(percentageSpent())
);
// Rotate direction
return glm::dvec3(rotMat * glm::dvec4(_start, 1.0));;
}
} // namespace openspace::skybrowser