Files
OpenSpace/modules/fieldlinessequence/util/fieldlinesstate.cpp
2017-10-18 23:29:09 +02:00

597 lines
27 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2017 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/fieldlinessequence/util/fieldlinesstate.h>
#include <ext/json/json.hpp>
#include <openspace/util/time.h>
#include <ghoul/logging/logmanager.h>
#include <fstream>
#ifdef OPENSPACE_MODULE_KAMELEON_ENABLED
#include <ccmc/Kameleon.h>
#include <ccmc/KameleonInterpolator.h>
#include <modules/kameleon/include/kameleonhelper.h>
#endif // OPENSPACE_MODULE_KAMELEON_ENABLED
namespace {
std::string _loggerCat = "FieldlinesState";
const int CurrentVersion = 0;
const std::string TAsPOverRho = "T = p/rho";
const std::string JParallelB = "Current: mag(J||B)";
const float ToKelvin = 72429735.6984f; // <-- [nPa]/[amu/cm^3] * ToKelvin => Temperature in Kelvin
using json = nlohmann::json;
}
namespace openspace {
#ifdef OPENSPACE_MODULE_KAMELEON_ENABLED
/**
* Traces and adds line vertices to state. (Also sets the simulation model variable: _model!)
* Vertices may need to be scaled to meters & converted from spherical into cartesian coordinates.
* Note that extraQuantities will NOT be set!
*/
bool FieldlinesState::addLinesFromKameleon(ccmc::Kameleon* kameleon,
const std::vector<glm::vec3>& seedPoints,
const std::string tracingVar) {
_model = fls::stringToModel(kameleon->getModelName());
float innerBoundaryLimit;
switch (_model) {
case fls::Model::Batsrus :
innerBoundaryLimit = 2.5f; // TODO specify in Lua?
break;
case fls::Model::Enlil :
innerBoundaryLimit = 0.11f; // TODO specify in Lua?
break;
default:
LERROR("OpenSpace's fieldlines sequence currently only supports CDFs from" <<
"the BATSRUS and ENLIL models!" );
return false;
}
// --------------------------- LOAD TRACING VARIABLE ---------------------------- //
if (!kameleon->loadVariable(tracingVar)) {
LERROR("FAILED TO LOAD TRACING VARIABLE: " << tracingVar);
return false;
}
LINFO("TRACING FIELD LINES!");
// - LOOP THROUGH THE SEED POINTS, TRACE LINES AND CONVERT TO THE DESIRED FORMAT - //
size_t lineStart = 0;
for (glm::vec3 seed : seedPoints) {
//--------------------------------------------------------------------------//
// We have to create a new tracer (or actually a new interpolator) for each //
// new line, otherwise some issues occur //
//--------------------------------------------------------------------------//
std::unique_ptr<ccmc::Interpolator> interpolator =
std::make_unique<ccmc::KameleonInterpolator>(kameleon->model);
ccmc::Tracer tracer(kameleon, interpolator.get());
tracer.setInnerBoundary(innerBoundaryLimit); // TODO specify in Lua?
ccmc::Fieldline ccmcFieldline = tracer.bidirectionalTrace(tracingVar,
seed.x,
seed.y,
seed.z);
const std::vector<ccmc::Point3f>& positions = ccmcFieldline.getPositions();
_lineStart.push_back(lineStart);
const size_t nLinePoints = positions.size();
_lineCount.push_back(static_cast<GLsizei>(nLinePoints));
lineStart += static_cast<GLint>(nLinePoints);
for (const ccmc::Point3f& p : positions) {
_vertexPositions.emplace_back(
glm::vec3(p.component1, p.component2, p.component3));
}
}
return _vertexPositions.size() > 0;
}
#endif // OPENSPACE_MODULE_KAMELEON_ENABLED
#ifdef OPENSPACE_MODULE_KAMELEON_ENABLED
void FieldlinesState::loadExtrasIntoKameleon(ccmc::Kameleon* kameleon,
std::vector<std::string>& xtraScalarVars,
std::vector<std::string>& xtraMagVars) {
// Load the existing SCALAR variables into kameleon.
// Remove non-existing variables from vector
for (int i = 0; i < xtraScalarVars.size(); i++) {
std::string& str = xtraScalarVars[i];
bool isSuccesful = kameleon->doesVariableExist(str) && kameleon->loadVariable(str);
if (!isSuccesful &&
(_model == fls::Model::Batsrus && (str == TAsPOverRho || str == "T" ))) {
LDEBUG("BATSRUS doesn't contain variable T for temperature. Trying to "
<< "calculate it using the ideal gas law: T = pressure/density");
const std::string p = "p", r = "rho";
isSuccesful = kameleon->doesVariableExist(p) && kameleon->loadVariable(p)
&& kameleon->doesVariableExist(r) && kameleon->loadVariable(r);
str = TAsPOverRho;
}
if (!isSuccesful) {
LWARNING("FAILED TO LOAD EXTRA VARIABLE: '" << str << "'. Ignoring it!");
xtraScalarVars.erase(xtraScalarVars.begin() + i);
--i;
} else {
_extraQuantityNames.push_back(str);
}
}
// Load the existing magnitude variables (should be provided in multiple of 3)
// into kameleon. Remove non-existing variables from vector
if (xtraMagVars.size() % 3 == 0) {
for (int i = 0; i < static_cast<int>(xtraMagVars.size()); i += 3) {
std::string s1 = xtraMagVars[i];
std::string s2 = xtraMagVars[i+1];
std::string s3 = xtraMagVars[i+2];
bool isSuccesful = kameleon->doesVariableExist(s1) &&
kameleon->doesVariableExist(s2) &&
kameleon->doesVariableExist(s3) &&
kameleon->loadVariable(s1) &&
kameleon->loadVariable(s2) &&
kameleon->loadVariable(s3);
std::string name = "Magnitude of (" + s1 + ", "+ s2 + ", "+ s3 + ")";
if (isSuccesful && _model == fls::Model::Batsrus && s1 == "jx" && s2 == "jy"
&& s3 == "jz") {
// CCMC isn't really interested in the magnitude of current, but by the
// magnitude of the part of the current's vector that is parallel to the
// magnetic field => ensure that the magnetic variables are loaded
isSuccesful = kameleon->doesVariableExist("bx") &&
kameleon->doesVariableExist("by") &&
kameleon->doesVariableExist("bz") &&
kameleon->loadVariable("bx") &&
kameleon->loadVariable("by") &&
kameleon->loadVariable("bz");
name = JParallelB;
}
if (!isSuccesful) {
LWARNING("FAILED TO LOAD AT LEAST ONE OF THE MAGNITUDE VARIABLES: "
<< s1 << ", " << s2 << " & " << s3
<< ". Removing ability to store corresponding magnitude!");
xtraMagVars.erase(xtraMagVars.begin() + i, xtraMagVars.begin() + i + 3);
i -= 3;
} else {
_extraQuantityNames.push_back(name);
}
}
} else {
// WRONG NUMBER OF MAGNITUDE VARIABLES.. REMOVE ALL!
xtraMagVars.clear();
LWARNING("Wrong number of variables provided for storing magnitudes. "
<< "Expects multiple of 3 but " << xtraMagVars.size()
<< " are provided");
}
}
#endif // OPENSPACE_MODULE_KAMELEON_ENABLED
#ifdef OPENSPACE_MODULE_KAMELEON_ENABLED
/**
* Loops through _vertexPositions and extracts corresponding 'extraQuantities' att each
* position from the kameleon object using a ccmc::interpolator.
* Note that the positions MUST be unaltered (NOT scaled NOR converted to different
* coordinate system)!
*
* @param kameleon raw pointer to an already opened Kameleon object
* @param xtraScalarVars vector of strings. Strings should be names of a scalar quantities
* to load into _extraQuantites; such as: "T" for temperature or "rho" for density.
* @param xtraMagVars vector of strings. Size must be multiple of 3. Strings should be
* names of the components needed to calculate magnitude. E.g. {"ux", "uy", "uz"} will
* calculate: sqrt(ux*ux + uy*uy + uz*uz). Magnitude will be stored in _extraQuantities
*/
void FieldlinesState::addExtraQuantities(ccmc::Kameleon* kameleon,
std::vector<std::string>& xtraScalarVars,
std::vector<std::string>& xtraMagVars) {
loadExtrasIntoKameleon(kameleon, xtraScalarVars, xtraMagVars);
const size_t nXtraScalars = xtraScalarVars.size();
const size_t nXtraMagnitudes = xtraMagVars.size() / 3;
_extraQuantities.resize(nXtraScalars + nXtraMagnitudes);
std::unique_ptr<ccmc::Interpolator> interpolator =
std::make_unique<ccmc::KameleonInterpolator>(kameleon->model);
// ------ Extract all the extraQuantities from kameleon and store in state! ------ //
for (const glm::vec3& p : _vertexPositions) {
// Load the scalars!
for (size_t i = 0; i < nXtraScalars; i++) {
float val;
if (xtraScalarVars[i] == TAsPOverRho) {
val = interpolator->interpolate("p", p.x, p.y, p.z);
val *= ToKelvin;
val /= interpolator->interpolate("rho", p.x, p.y, p.z);
} else {
val = interpolator->interpolate(xtraScalarVars[i], p.x, p.y, p.z);
// When measuring density in ENLIL CCMC multiply by the radius^2
if (xtraScalarVars[i] == "rho" && _model == fls::Model::Enlil) {
val *= std::pow(p.x * fls::AuToMeter, 2.0f);
}
}
_extraQuantities[i].push_back(val);
}
// Calculate and store the magnitudes!
for (size_t i = 0; i < nXtraMagnitudes; ++i) {
const size_t idx = i*3;
const float x = interpolator->interpolate(xtraMagVars[idx] , p.x, p.y, p.z);
const float y = interpolator->interpolate(xtraMagVars[idx+1], p.x, p.y, p.z);
const float z = interpolator->interpolate(xtraMagVars[idx+2], p.x, p.y, p.z);
float val;
// When looking at the current's magnitude in Batsrus, CCMC staff are
// only interested in the magnitude parallel to the magnetic field
if (_extraQuantityNames[nXtraScalars + i] == JParallelB) {
const glm::vec3 normMagnetic = glm::normalize(glm::vec3(
interpolator->interpolate("bx", p.x, p.y, p.z),
interpolator->interpolate("by", p.x, p.y, p.z),
interpolator->interpolate("bz", p.x, p.y, p.z)));
// Magnitude of the part of the current vector that's parallel to
// the magnetic field vector!
val = glm::dot(glm::vec3(x,y,z), normMagnetic);
} else {
val = std::sqrt(x*x + y*y + z*z);
}
_extraQuantities[i + nXtraScalars].push_back(val);
}
}
}
#endif // OPENSPACE_MODULE_KAMELEON_ENABLED
#ifdef OPENSPACE_MODULE_KAMELEON_ENABLED
/**
* Converts all glm::vec3 in _vertexPositions from spherical (radius, latitude, longitude)
* coordinates into cartesian coordinates. The longitude and latitude coordinates are
* expected to be in degrees. scale is an optional scaling factor.
*/
void FieldlinesState::convertLatLonToCartesian(const float scale /* = 1.f */) {
for (glm::vec3& p : _vertexPositions) {
const float r = p.x * scale;
const float lat = glm::radians(p.y);
const float lon = glm::radians(p.z);
const float rCosLat = r * cos(lat);
p = glm::vec3(rCosLat * cos(lon), rCosLat* sin(lon), r * sin(lat));
}
}
#endif // OPENSPACE_MODULE_KAMELEON_ENABLED
#ifdef OPENSPACE_MODULE_KAMELEON_ENABLED
void FieldlinesState::scalePositions(const float scale) {
for (glm::vec3& p : _vertexPositions) {
p *= scale;
}
}
#endif // OPENSPACE_MODULE_KAMELEON_ENABLED
bool FieldlinesState::loadStateFromOsfls(const std::string& pathToOsflsFile) {
std::ifstream ifs(pathToOsflsFile, std::ifstream::binary);
if (!ifs.is_open()) {
LERRORC("FieldlinesState", "Couldn't open file: " + pathToOsflsFile);
return false;
}
int binFileVersion;
ifs.read( reinterpret_cast<char*>(&binFileVersion), sizeof(int));
switch (binFileVersion) {
case 0 : {
// No need to put everything in this scope now, as only version 0 exists!
}
break;
default :
LERRORC("FieldlinesState","VERSION OF BINARY FILE WAS NOT RECOGNISED!");
return false;
}
// Define tmp variables to store meta data in
size_t nLines;
size_t nPoints;
size_t nExtras;
size_t byteSizeAllNames;
// Read single value variables
ifs.read( reinterpret_cast<char*>(&_triggerTime), sizeof(double));
ifs.read( reinterpret_cast<char*>(&_model), sizeof(int));
ifs.read( reinterpret_cast<char*>(&_isMorphable), sizeof(bool));
ifs.read( reinterpret_cast<char*>(&nLines), sizeof(size_t));
ifs.read( reinterpret_cast<char*>(&nPoints), sizeof(size_t));
ifs.read( reinterpret_cast<char*>(&nExtras), sizeof(size_t));
ifs.read( reinterpret_cast<char*>(&byteSizeAllNames), sizeof(size_t));
// RESERVE/RESIZE vectors
// TODO: Do this without initializing values? Resize is slower than just using reserve, due to initialization of all values
_lineStart.resize(nLines);
_lineCount.resize(nLines);
_vertexPositions.resize(nPoints);
_extraQuantities.resize(nExtras);
_extraQuantityNames.reserve(nExtras);
// Read vertex position data
ifs.read( reinterpret_cast<char*>(_lineStart.data()), sizeof(GLint)*nLines);
ifs.read( reinterpret_cast<char*>(_lineCount.data()), sizeof(GLsizei)*nLines);
ifs.read( reinterpret_cast<char*>(_vertexPositions.data()), sizeof(glm::vec3)*nPoints);
// Read all extra quantities
for (std::vector<float>& vec : _extraQuantities) {
vec.resize(nPoints);
ifs.read( reinterpret_cast<char*>(vec.data()), sizeof(float) * nPoints);
}
// Read all extra quantities' names. Stored as multiple c-strings
std::string allNamesInOne;
char* s = new char[byteSizeAllNames];
ifs.read(s, byteSizeAllNames);
allNamesInOne.assign(s, byteSizeAllNames);
delete[] s;
size_t offset = 0;
for (size_t i = 0; i < nExtras; ++i) {
auto endOfVarName = allNamesInOne.find('\0', offset);
endOfVarName -= offset;
std::string varName = allNamesInOne.substr(offset, endOfVarName);
offset += varName.size() + 1;
_extraQuantityNames.push_back(varName);
}
return true;
}
bool FieldlinesState::loadStateFromJson(const std::string& pathToJsonFile,
const fls::Model Model,
const float coordToMeters = 1.f) {
// --------------------- ENSURE FILE IS VALID, THEN PARSE IT --------------------- //
std::ifstream ifs(pathToJsonFile);
if (!ifs.is_open()) {
LERROR("FAILED TO OPEN FILE: " << pathToJsonFile);
return false;
}
json jFile;
ifs >> jFile;
// -------------------------------------------------------------------------------- //
_model = Model;
const std::string sData = "data";
const std::string sTrace = "trace";
// ----- EXTRACT THE EXTRA QUANTITY NAMES & TRIGGER TIME (same for all lines) ----- //
{
const json jTmp = *jFile.begin(); // First field line in the file
_triggerTime = Time::convertTime(jTmp["time"]);
const std::string sColumns = "columns";
auto variableNameVec = jTmp[sTrace][sColumns];
const size_t nVariables = variableNameVec.size();
const size_t nPosComponents = 3; // x,y,z
if (nVariables < nPosComponents) {
LERROR(pathToJsonFile + ": Each field '" + sColumns +
"' must contain the variables: 'x', 'y' and 'z' (order is important).");
return false;
}
for (size_t i = nPosComponents ; i < nVariables ; i++) {
_extraQuantityNames.push_back(variableNameVec[i]);
}
}
const size_t nExtras = _extraQuantityNames.size();
_extraQuantities.resize(nExtras);
size_t lineStartIdx = 0;
// Loop through all fieldlines
for (json::iterator lineIter = jFile.begin(); lineIter != jFile.end(); ++lineIter) {
// The 'data' field in the 'trace' variable contains all vertex positions and the
// extra quantities. Each element is an array related to one vertex point.
const std::vector<std::vector<float>> jData = (*lineIter)[sTrace][sData];
const size_t nPoints = jData.size();
for (size_t j = 0; j < nPoints; ++j) {
const std::vector<float>& variables = jData[j];
// Expects the x, y and z variables to be stored first!
const size_t xIdx = 0, yIdx = 1, zIdx = 2;
_vertexPositions.push_back(coordToMeters * glm::vec3(variables[xIdx],
variables[yIdx],
variables[zIdx]));
// Add the extra quantites. Stored in the same array as the x,y,z variables.
// Hence index of the first extra quantity = 3
for (size_t xtraIdx = 3, k = 0 ; k < nExtras; ++k, ++xtraIdx) {
_extraQuantities[k].push_back(variables[xtraIdx]);
}
}
_lineCount.push_back(static_cast<GLsizei>(nPoints));
_lineStart.push_back(static_cast<GLsizei>(lineStartIdx));
lineStartIdx += nPoints;
}
return true;
}
/**
* @param absPath must be the path to the file (incl. filename but excl. extension!)
* Directory must exist! File is created (or overwritten if already existing).
* File is structured like this: (for version 0)
* 0. int - version number of binary state file! (in case something needs to be altered in the future, then increase CurrentVersion)
* 1. double - _triggerTime
* 2. int - _model
* 3. bool - _isMorphable
* 4. size_t - Number of lines in the state == _lineStart.size() == _lineCount.size()
* 5. size_t - Total number of vertex points == _vertexPositions.size() == _extraQuantities[i].size()
* 6. size_t - Number of extra quantites == _extraQuantities.size() == _extraQuantityNames.size()
* 7. site_t - Number of total bytes that ALL _extraQuantityNames consists of (Each such name is stored as a c_str which means it ends with the null char '\0' )
* 7. std::vector<GLint> - _lineStart
* 8. std::vector<GLsizei> - _lineCount
* 9. std::vector<glm::vec3> - _vertexPositions
* 10. std::vector<float> - _extraQuantities
* 11. array of c_str - Strings naming the extra quantities (elements of _extraQuantityNames). Each string ends with null char '\0'
*/
void FieldlinesState::saveStateToOsfls(const std::string& absPath) {
// ------------------------------- Create the file ------------------------------- //
std::string pathSafeTimeString = Time(_triggerTime).ISO8601();
pathSafeTimeString.replace(13, 1, "-");
pathSafeTimeString.replace(16, 1, "-");
pathSafeTimeString.replace(19, 1, "-");
const std::string fileName = pathSafeTimeString + ".osfls";
std::ofstream ofs(absPath + fileName, std::ofstream::binary | std::ofstream::trunc);
if (!ofs.is_open()) {
LERROR("Failed to save state to binary file: " << absPath << fileName);
return;
}
// --------- Add each string of _extraQuantityNames into one long string --------- //
std::string allExtraQuantityNamesInOne = "";
for (std::string str : _extraQuantityNames) {
allExtraQuantityNamesInOne += str + '\0'; // Add the null char '\0' for easier reading
}
const size_t nLines = _lineStart.size();
const size_t nPoints = _vertexPositions.size();
const size_t nExtras = _extraQuantities.size();
const size_t nStringBytes = allExtraQuantityNamesInOne.size();
//------------------------------ WRITE EVERYTHING TO FILE ------------------------------
// WHICH VERSION OF BINARY FIELDLINES STATE FILE - IN CASE STRUCTURE CHANGES IN THE FUTURE
ofs.write( (char*)(&CurrentVersion), sizeof( int ) );
//-------------------- WRITE META DATA FOR STATE --------------------------------
ofs.write( reinterpret_cast<char*>(&_triggerTime), sizeof( _triggerTime ) );
ofs.write( reinterpret_cast<char*>(&_model), sizeof( int ) );
ofs.write( reinterpret_cast<char*>(&_isMorphable), sizeof( bool ) );
ofs.write( reinterpret_cast<const char*>(&nLines), sizeof( size_t ) );
ofs.write( reinterpret_cast<const char*>(&nPoints), sizeof( size_t ) );
ofs.write( reinterpret_cast<const char*>(&nExtras), sizeof( size_t ) );
ofs.write( reinterpret_cast<const char*>(&nStringBytes), sizeof( size_t ) );
//---------------------- WRITE ALL ARRAYS OF DATA --------------------------------
ofs.write( reinterpret_cast<char*>(_lineStart.data()), sizeof(GLint) * nLines);
ofs.write( reinterpret_cast<char*>(_lineCount.data()), sizeof(GLsizei) * nLines);
ofs.write( reinterpret_cast<char*>(_vertexPositions.data()), sizeof(glm::vec3) * nPoints);
// Write the data for each vector in _extraQuantities
for (std::vector<float>& vec : _extraQuantities) {
ofs.write( reinterpret_cast<char*>(vec.data()), sizeof(float) * nPoints);
}
ofs.write( allExtraQuantityNamesInOne.c_str(), nStringBytes);
}
// TODO: This should probably be rewritten, but this is the way the files were structured by CCMC
// Structure of File! NO TRAILING COMMAS ALLOWED!
// Additional info can be stored within each line as the code only extracts the keys it needs (time, trace & data)
// The key/name of each line ("0" & "1" in the example below) is arbitrary
// {
// "0":{
// "time": "YYYY-MM-DDTHH:MM:SS.XXX",
// "trace": {
// "columns": ["x","y","z","s","temperature","rho","j_para"],
// "data": [[8.694,127.853,115.304,0.0,0.047,9.249,-5e-10],...,[8.698,127.253,114.768,0.800,0.0,9.244,-5e-10]]
// },
// },
// "1":{
// "time": "YYYY-MM-DDTHH:MM:SS.XXX
// "trace": {
// "columns": ["x","y","z","s","temperature","rho","j_para"],
// "data": [[8.694,127.853,115.304,0.0,0.047,9.249,-5e-10],...,[8.698,127.253,114.768,0.800,0.0,9.244,-5e-10]]
// },
// }
// }
void FieldlinesState::saveStateToJson(const std::string& absPath) {
// Create the file
const std::string ext = ".json";
std::ofstream ofs(absPath + ext, std::ofstream::trunc);
if (!ofs.is_open()) {
LERROR("Failed to save state to json file at location: " << absPath << ext);
return;
}
LINFO("Saving fieldline state to: " << absPath << ext );
json jColumns = {"x", "y", "z"};
for (std::string s : _extraQuantityNames) {
jColumns.push_back(s);
}
json jFile;
const std::string timeStr = Time(_triggerTime).ISO8601();
const size_t nLines = _lineStart.size();
const size_t nPoints = _vertexPositions.size();
const size_t nExtras = _extraQuantities.size();
size_t pointIndex = 0;
for (size_t lineIndex = 0; lineIndex < nLines; lineIndex++) {
json jData = json::array();
for (size_t i = 0; i < _lineCount[lineIndex]; i++, pointIndex++) {
const glm::vec3 pos = _vertexPositions[pointIndex];
json jDataElement = {pos.x, pos.y, pos.z};
for (size_t extraIndex = 0; extraIndex < nExtras; extraIndex++) {
jDataElement.push_back(_extraQuantities[extraIndex][pointIndex]);
}
jData.push_back(jDataElement);
}
jFile[std::to_string(lineIndex)] = {
{"time", timeStr},
{"trace", {
{"columns", jColumns},
{"data", jData}
}}
};
}
//------------------------------ WRITE EVERYTHING TO FILE ------------------------------
const int indentationSpaces = 2;
ofs << std::setw(indentationSpaces) << jFile << std::endl;
LINFO("Saved fieldline state to: " << absPath << ext );
}
// Returns one of the extra quantity vectors, _extraQuantities[index].
// If index is out of scope an empty vector is returned and the referenced bool will be false.
const std::vector<float>& FieldlinesState::extraQuantity(const size_t index,
bool& isSuccessful) const {
if (index < _extraQuantities.size()) {
isSuccessful = true;
return _extraQuantities[index];
}
isSuccessful = false;
// return empty vector which goes out of scope hence unusable!
return std::vector<float>();
}
} // namespace openspace