Files
OpenSpace/modules/base/rendering/grids/renderableradialgrid.cpp
2020-06-30 13:48:50 +02:00

445 lines
14 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2020 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/base/rendering/grids/renderableradialgrid.h>
#include <modules/base/basemodule.h>
#include <openspace/engine/globals.h>
#include <openspace/rendering/renderengine.h>
#include <openspace/util/spicemanager.h>
#include <openspace/util/updatestructures.h>
#include <openspace/documentation/verifier.h>
#include <ghoul/glm.h>
#include <ghoul/filesystem/filesystem.h>
#include <ghoul/opengl/programobject.h>
namespace {
constexpr const char* ProgramName = "GridProgram";
constexpr openspace::properties::Property::PropertyInfo GridColorInfo = {
"GridColor",
"Grid Color",
"This value determines the color of the grid lines that are rendered."
};
constexpr openspace::properties::Property::PropertyInfo GridSegmentsInfo = {
"GridSegments",
"Number of Grid Segments",
"Specifies the number of segments for the grid, in the radial and angular "
" direction respectively"
};
constexpr openspace::properties::Property::PropertyInfo CircleSegmentsInfo = {
"CircleSegments",
"Number of Circle Segments",
"This value specifies the number of segments that is used to render each circle "
"in the grid"
};
constexpr openspace::properties::Property::PropertyInfo LineWidthInfo = {
"LineWidth",
"Line Width",
"This value specifies the line width of the spherical grid."
};
constexpr openspace::properties::Property::PropertyInfo OuterRadiusInfo = {
"OuterRadius",
"Outer Radius",
"The outer radius of the circular grid, i.e. its size."
};
constexpr openspace::properties::Property::PropertyInfo InnerRadiusInfo = {
"InnerRadius",
"Inner Radius",
"The inner radius of the circular grid, that is the radius of the inmost ring. "
"Must be smaller than the outer radius."
};
} // namespace
namespace openspace {
documentation::Documentation RenderableRadialGrid::Documentation() {
using namespace documentation;
return {
"RenderableRadialGrid",
"base_renderable_radialgrid",
{
{
GridColorInfo.identifier,
new DoubleVector3Verifier,
Optional::Yes,
GridColorInfo.description
},
{
GridSegmentsInfo.identifier,
new DoubleVector2Verifier,
Optional::Yes,
GridSegmentsInfo.description
},
{
CircleSegmentsInfo.identifier,
new IntVerifier,
Optional::Yes,
CircleSegmentsInfo.description
},
{
LineWidthInfo.identifier,
new DoubleVerifier,
Optional::Yes,
LineWidthInfo.description
},
{
OuterRadiusInfo.identifier,
new DoubleVerifier,
Optional::Yes,
OuterRadiusInfo.description
},
{
InnerRadiusInfo.identifier,
new DoubleVerifier,
Optional::Yes,
InnerRadiusInfo.description
}
}
};
}
RenderableRadialGrid::RenderableRadialGrid(const ghoul::Dictionary& dictionary)
: Renderable(dictionary)
, _gridProgram(nullptr)
, _gridColor(
GridColorInfo,
glm::vec3(0.5f, 0.5, 0.5f),
glm::vec3(0.f),
glm::vec3(1.f)
)
, _gridSegments(
GridSegmentsInfo,
glm::ivec2(1, 1), // TODO: better default
glm::ivec2(1),
glm::ivec2(200)
)
, _circleSegments(CircleSegmentsInfo, 36, 4, 200)
, _lineWidth(LineWidthInfo, 0.5f, 0.f, 20.f)
, _maxRadius(OuterRadiusInfo, 1.f, 0.f, 20.f)
, _minRadius(InnerRadiusInfo, 0.f, 0.f, 20.f)
{
documentation::testSpecificationAndThrow(
Documentation(),
dictionary,
"RenderableRadialGrid"
);
addProperty(_opacity);
registerUpdateRenderBinFromOpacity();
if (dictionary.hasKey(GridColorInfo.identifier)) {
_gridColor = dictionary.value<glm::vec3>(GridColorInfo.identifier);
}
_gridColor.setViewOption(properties::Property::ViewOptions::Color);
addProperty(_gridColor);
if (dictionary.hasKey(GridSegmentsInfo.identifier)) {
_gridSegments = static_cast<glm::ivec2>(
dictionary.value<glm::vec2>(GridSegmentsInfo.identifier)
);
}
_gridSegments.onChange([&]() { _gridIsDirty = true; });
addProperty(_gridSegments);
if (dictionary.hasKey(CircleSegmentsInfo.identifier)) {
_circleSegments = static_cast<int>(
dictionary.value<double>(CircleSegmentsInfo.identifier)
);
}
_circleSegments.onChange([&]() {
if (_circleSegments.value() % 2 == 1) {
_circleSegments = _circleSegments - 1;
}
_gridIsDirty = true;
});
addProperty(_circleSegments);
if (dictionary.hasKey(LineWidthInfo.identifier)) {
_lineWidth = static_cast<float>(
dictionary.value<double>(LineWidthInfo.identifier)
);
}
addProperty(_lineWidth);
if (dictionary.hasKey(OuterRadiusInfo.identifier)) {
_maxRadius = static_cast<float>(
dictionary.value<double>(OuterRadiusInfo.identifier)
);
}
if (dictionary.hasKey(InnerRadiusInfo.identifier)) {
_minRadius = static_cast<float>(
dictionary.value<double>(InnerRadiusInfo.identifier)
);
}
_maxRadius.setMinValue(_minRadius);
_minRadius.setMaxValue(_maxRadius);
_maxRadius.onChange([&]() {
_gridIsDirty = true;
_minRadius.setMaxValue(_maxRadius);
});
_minRadius.onChange([&]() {
_gridIsDirty = true;
_maxRadius.setMinValue(_minRadius);
});
addProperty(_maxRadius);
addProperty(_minRadius);
}
bool RenderableRadialGrid::isReady() const {
return _gridProgram != nullptr;
}
void RenderableRadialGrid::initializeGL() {
_gridProgram = BaseModule::ProgramObjectManager.request(
ProgramName,
[]() -> std::unique_ptr<ghoul::opengl::ProgramObject> {
return global::renderEngine.buildRenderProgram(
ProgramName,
absPath("${MODULE_BASE}/shaders/grid_vs.glsl"),
absPath("${MODULE_BASE}/shaders/grid_fs.glsl")
);
}
);
_lines = std::make_unique<LineData>();
}
void RenderableRadialGrid::deinitializeGL() {
BaseModule::ProgramObjectManager.release(
ProgramName,
[](ghoul::opengl::ProgramObject* p) {
global::renderEngine.removeRenderProgram(p);
}
);
_gridProgram = nullptr;
}
void RenderableRadialGrid::render(const RenderData& data, RendererTasks&){
_gridProgram->activate();
_gridProgram->setUniform("opacity", _opacity);
const glm::dmat4 modelTransform =
glm::translate(glm::dmat4(1.0), data.modelTransform.translation) * // Translation
glm::dmat4(data.modelTransform.rotation) * // Spice rotation
glm::scale(glm::dmat4(1.0), glm::dvec3(data.modelTransform.scale));
const glm::dmat4 modelViewTransform = data.camera.combinedViewMatrix() *
modelTransform;
_gridProgram->setUniform("modelViewTransform", modelViewTransform);
_gridProgram->setUniform(
"MVPTransform",
glm::dmat4(data.camera.projectionMatrix()) * modelViewTransform
);
_gridProgram->setUniform("gridColor", _gridColor);
float adjustedLineWidth = 1.f;
#ifndef __APPLE__
adjustedLineWidth = _lineWidth;
#endif
// Saves current state:
GLboolean isBlendEnabled = glIsEnabledi(GL_BLEND, 0);
GLfloat currentLineWidth;
glGetFloatv(GL_LINE_WIDTH, &currentLineWidth);
GLboolean isLineSmoothEnabled = glIsEnabled(GL_LINE_SMOOTH);
GLenum blendEquationRGB;
GLenum blendEquationAlpha;
GLenum blendDestAlpha;
GLenum blendDestRGB;
GLenum blendSrcAlpha;
GLenum blendSrcRGB;
glGetIntegerv(GL_BLEND_EQUATION_RGB, &blendEquationRGB);
glGetIntegerv(GL_BLEND_EQUATION_ALPHA, &blendEquationAlpha);
glGetIntegerv(GL_BLEND_DST_ALPHA, &blendDestAlpha);
glGetIntegerv(GL_BLEND_DST_RGB, &blendDestRGB);
glGetIntegerv(GL_BLEND_SRC_ALPHA, &blendSrcAlpha);
glGetIntegerv(GL_BLEND_SRC_RGB, &blendSrcRGB);
// Changes GL state:
glLineWidth(adjustedLineWidth);
glEnablei(GL_BLEND, 0);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_LINE_SMOOTH);
for (std::unique_ptr<CircleData>& c : _circles) {
c->render();
}
_lines->render();
_gridProgram->deactivate();
// Restores GL State
glLineWidth(currentLineWidth);
glBlendEquationSeparate(blendEquationRGB, blendEquationAlpha);
glBlendFuncSeparate(blendSrcRGB, blendDestRGB, blendSrcAlpha, blendDestAlpha);
if (!isBlendEnabled) {
glDisablei(GL_BLEND, 0);
}
if (!isLineSmoothEnabled) {
glDisable(GL_LINE_SMOOTH);
}
}
void RenderableRadialGrid::update(const UpdateData&) {
if (_gridIsDirty) {
// Circles
auto createRing = [](int nSegments, float radius) {
const int nVertices = nSegments + 1;
std::vector<Vertex> vertices(nVertices);
const float fsegments = static_cast<float>(nSegments);
for (int i = 0; i <= nSegments; ++i) {
const float fi = static_cast<float>(i);
const float theta = fi * glm::pi<float>() * 2.0f / fsegments; // 0 -> 2*PI
const float x = radius * cos(theta);
const float y = radius * sin(theta);
const float z = 0.0f;
vertices[i] = { x, y, z };
}
return vertices;
};
const int nRadialSegments = _gridSegments.value()[0];
const float fnCircles = static_cast<float>(nRadialSegments);
const float deltaRadius = (_maxRadius - _minRadius) / fnCircles;
const bool hasInnerRadius = _minRadius > 0;
const int nCircles = hasInnerRadius ? nRadialSegments : nRadialSegments + 1;
_circles.clear();
_circles.reserve(nCircles);
// add an extra inmost circle
if (hasInnerRadius) {
_circles.push_back(std::make_unique<CircleData>());
_circles.back()->varray = createRing(_circleSegments, _minRadius);
_circles.back()->update();
}
for (int i = 0; i < nRadialSegments; ++i) {
float ri = static_cast<float>(i + 1) * deltaRadius;
ri += _minRadius;
_circles.push_back(std::make_unique<CircleData>());
_circles.back()->varray = createRing(_circleSegments, ri);
_circles.back()->update();
}
// Lines
const int nLines = _gridSegments.value()[1];
const float fsegments = static_cast<float>(nLines);
_lines->varray.clear();
if (nLines > 1) {
for (int i = 0; i < nLines; ++i) {
const float fi = static_cast<float>(i);
const float theta = fi * glm::pi<float>() * 2.0f / fsegments; // 0 -> 2*PI
float x = _maxRadius * cos(theta);
float y = _maxRadius * sin(theta);
float z = 0.0f;
_lines->varray.push_back({ x, y, z });
x = _minRadius * cos(theta);
y = _minRadius * sin(theta);
_lines->varray.push_back({ x, y, z });
}
}
_lines->update();
_gridIsDirty = false;
}
}
RenderableRadialGrid::GeometryData::GeometryData(GLenum renderMode)
: mode(renderMode)
{
glGenVertexArrays(1, &vao);
glGenBuffers(1, &vbo);
glBindVertexArray(vao);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glEnableVertexAttribArray(0);
glBindVertexArray(0);
}
RenderableRadialGrid::GeometryData::~GeometryData() {
glDeleteVertexArrays(1, &vao);
vao = 0;
glDeleteBuffers(1, &vbo);
vbo = 0;
}
void RenderableRadialGrid::GeometryData::update() {
glBindVertexArray(vao);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(
GL_ARRAY_BUFFER,
varray.size() * sizeof(Vertex),
varray.data(),
GL_STATIC_DRAW
);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), nullptr);
}
void RenderableRadialGrid::GeometryData::render() {
glBindVertexArray(vao);
glDrawArrays(mode, 0, static_cast<GLsizei>(varray.size()));
glBindVertexArray(0);
}
} // namespace openspace