Files
OpenSpace/include/openspace/network/messagestructures.h

485 lines
16 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2021 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#ifndef __OPENSPACE_CORE___MESSAGESTRUCTURES___H__
#define __OPENSPACE_CORE___MESSAGESTRUCTURES___H__
#include <ghoul/fmt.h>
#include <ghoul/glm.h>
#include <ghoul/logging/logmanager.h>
#include <algorithm>
#include <cstring>
#include <fstream>
#include <iomanip>
#include <sstream>
#include <string>
#include <vector>
namespace openspace::datamessagestructures {
enum class Type : uint32_t {
CameraData = 0,
TimelineData,
ScriptData
};
struct CameraKeyframe {
CameraKeyframe() = default;
CameraKeyframe(const std::vector<char>& buffer) {
deserialize(buffer);
}
CameraKeyframe(glm::dvec3&& pos, glm::dquat&& rot, std::string&& focusNode,
bool&& followNodeRot, float&& scale)
: _position(pos)
, _rotation(rot)
, _followNodeRotation(followNodeRot)
, _focusNode(focusNode)
, _scale(scale)
{}
glm::dvec3 _position = glm::dvec3(0.0);
glm::dquat _rotation = glm::dquat(1.0, 0.0, 0.0, 0.0);
bool _followNodeRotation = false;
std::string _focusNode;
float _scale = 0.f;
double _timestamp = 0.0;
void serialize(std::vector<char> &buffer) const {
// Add position
buffer.insert(
buffer.end(),
reinterpret_cast<const char*>(&_position),
reinterpret_cast<const char*>(&_position) + sizeof(_position)
);
// Add orientation
buffer.insert(
buffer.end(),
reinterpret_cast<const char*>(&_rotation),
reinterpret_cast<const char*>(&_rotation) + sizeof(_rotation)
);
// Follow focus node rotation?
buffer.insert(
buffer.end(),
reinterpret_cast<const char*>(&_followNodeRotation),
reinterpret_cast<const char*>(&_followNodeRotation) +
sizeof(_followNodeRotation)
);
int nodeNameLength = static_cast<int>(_focusNode.size());
// Add focus node
buffer.insert(
buffer.end(),
reinterpret_cast<const char*>(&nodeNameLength),
reinterpret_cast<const char*>(&nodeNameLength) + sizeof(nodeNameLength)
);
buffer.insert(
buffer.end(),
_focusNode.data(),
_focusNode.data() + nodeNameLength
);
buffer.insert(
buffer.end(),
reinterpret_cast<const char*>(&_scale),
reinterpret_cast<const char*>(&_scale) + sizeof(_scale)
);
// Add timestamp
buffer.insert(
buffer.end(),
reinterpret_cast<const char*>(&_timestamp),
reinterpret_cast<const char*>(&_timestamp) + sizeof(_timestamp)
);
};
size_t deserialize(const std::vector<char>& buffer, size_t offset = 0) {
int size = 0;
// Position
size = sizeof(_position);
std::memcpy(glm::value_ptr(_position), buffer.data() + offset, size);
offset += size;
// Orientation
size = sizeof(_rotation);
std::memcpy(glm::value_ptr(_rotation), buffer.data() + offset, size);
offset += size;
// Follow focus node rotation?
size = sizeof(_followNodeRotation);
std::memcpy(&_followNodeRotation, buffer.data() + offset, size);
offset += size;
// Focus node
int nodeNameLength;
size = sizeof(int);
std::memcpy(&nodeNameLength, buffer.data() + offset, size);
offset += size;
size = nodeNameLength;
_focusNode = std::string(buffer.data() + offset, buffer.data() + offset + size);
offset += size;
// Scale
size = sizeof(_scale);
std::memcpy(&_scale, buffer.data() + offset, size);
offset += size;
// Timestamp
size = sizeof(_timestamp);
std::memcpy(&_timestamp, buffer.data() + offset, size);
offset += size;
return offset;
};
void write(std::ostream& out) const {
out.write(
reinterpret_cast<const char*>(glm::value_ptr(_position)),
sizeof(_position)
);
out.write(
reinterpret_cast<const char*>(glm::value_ptr(_rotation)),
sizeof(_rotation)
);
// Write follow focus node rotation?
out.write(
reinterpret_cast<const char*>(&_followNodeRotation),
sizeof(_followNodeRotation)
);
int nodeNameLength = static_cast<int>(_focusNode.size());
// Write focus node
out.write(reinterpret_cast<const char*>(&nodeNameLength), sizeof(nodeNameLength));
out.write(_focusNode.c_str(), _focusNode.size());
// Write scale
out.write(reinterpret_cast<const char*>(&_scale), sizeof(_scale));
// Write timestamp
out.write(reinterpret_cast<const char*>(&_timestamp), sizeof(_timestamp));
};
void write(std::stringstream& out) const {
// Add camera position
out << std::fixed << std::setprecision(7) << _position.x << ' '
<< std::fixed << std::setprecision(7) << _position.y << ' '
<< std::fixed << std::setprecision(7) << _position.z << ' ';
// Add camera rotation
out << std::fixed << std::setprecision(7) << _rotation.x << ' '
<< std::fixed << std::setprecision(7) << _rotation.y << ' '
<< std::fixed << std::setprecision(7) << _rotation.z << ' '
<< std::fixed << std::setprecision(7) << _rotation.w << ' ';
out << std::fixed
<< std::setprecision(std::numeric_limits<double>::max_digits10)
<< _scale << ' ';
if (_followNodeRotation) {
out << "F ";
}
else {
out << "- ";
}
out << _focusNode;
};
void read(std::istream* in) {
// Read position
in->read(reinterpret_cast<char*>(&_position), sizeof(_position));
// Read orientation
in->read(reinterpret_cast<char*>(&_rotation), sizeof(_rotation));
// Read follow focus node rotation
unsigned char b;
in->read(reinterpret_cast<char*>(&b), sizeof(unsigned char));
_followNodeRotation = (b == 1);
// Read focus node
int nodeNameLength = static_cast<int>(_focusNode.size());
in->read(reinterpret_cast<char*>(&nodeNameLength), sizeof(nodeNameLength));
std::vector<char> temp(static_cast<size_t>(nodeNameLength) + 1);
in->read(temp.data(), nodeNameLength);
temp[nodeNameLength] = '\0';
_focusNode = temp.data();
// Read scale
in->read(reinterpret_cast<char*>(&_scale), sizeof(_scale));
// Read timestamp
in->read(reinterpret_cast<char*>(&_timestamp), sizeof(_timestamp));
};
void read(std::istringstream& iss) {
std::string rotationFollowing;
iss >> _position.x
>> _position.y
>> _position.z
>> _rotation.x
>> _rotation.y
>> _rotation.z
>> _rotation.w
>> _scale
>> rotationFollowing
>> _focusNode;
_followNodeRotation = (rotationFollowing == "F");
};
};
struct TimeKeyframe {
TimeKeyframe() = default;
TimeKeyframe(const std::vector<char>& buffer) {
deserialize(buffer);
}
double _time = 0.0;
double _dt = 0.0;
bool _paused = false;
bool _requiresTimeJump = false;
double _timestamp = 0.0;
void serialize(std::vector<char>& buffer) const {
buffer.insert(
buffer.end(),
reinterpret_cast<const char*>(this),
reinterpret_cast<const char*>(this) + sizeof(TimeKeyframe)
);
};
size_t deserialize(const std::vector<char>& buffer, size_t offset = 0) {
*this = *reinterpret_cast<const TimeKeyframe*>(buffer.data() + offset);
offset += sizeof(TimeKeyframe);
return offset;
};
void write(std::ostream* out) const {
out->write(reinterpret_cast<const char*>(this), sizeof(TimeKeyframe));
};
void write(std::stringstream& out) const {
out << ' ' << _dt;
if (_paused) {
out << " P";
}
else {
out << " R";
}
if (_requiresTimeJump) {
out << " J";
}
else {
out << " -";
}
};
void read(std::istream* in) {
in->read(reinterpret_cast<char*>(this), sizeof(TimeKeyframe));
};
void read(std::istringstream& iss) {
std::string paused, jump;
iss >> _dt
>> paused
>> jump;
_paused = (paused == "P");
_requiresTimeJump = (jump == "J");
};
};
struct TimeTimeline {
TimeTimeline() = default;
TimeTimeline(const std::vector<char>& buffer) {
deserialize(buffer);
}
bool _clear = true;
std::vector<TimeKeyframe> _keyframes;
void serialize(std::vector<char>& buffer) const {
buffer.insert(
buffer.end(),
reinterpret_cast<const char*>(&_clear),
reinterpret_cast<const char*>(&_clear) + sizeof(bool)
);
int64_t nKeyframes = _keyframes.size();
buffer.insert(
buffer.end(),
reinterpret_cast<const char*>(&nKeyframes),
reinterpret_cast<const char*>(&nKeyframes) + sizeof(int64_t)
);
for (const TimeKeyframe& k : _keyframes) {
k.serialize(buffer);
}
};
size_t deserialize(const std::vector<char>& buffer, size_t offset = 0) {
int size = 0;
size = sizeof(_clear);
std::memcpy(&_clear, buffer.data() + offset, size);
offset += size;
int64_t nKeyframes = _keyframes.size();
size = sizeof(nKeyframes);
std::memcpy(&nKeyframes, buffer.data() + offset, size);
offset += size;
_keyframes.resize(nKeyframes);
for (TimeKeyframe& k : _keyframes) {
offset = k.deserialize(buffer, offset);
}
return offset;
};
void write(std::ostream* out) const {
out->write(reinterpret_cast<const char*>(&_clear), sizeof(bool));
int64_t nKeyframes = _keyframes.size();
out->write(reinterpret_cast<const char*>(&nKeyframes), sizeof(int64_t));
for (const TimeKeyframe& k : _keyframes) {
k.write(out);
}
};
void read(std::istream* in) {
in->read(reinterpret_cast<char*>(&_clear), sizeof(bool));
int64_t nKeyframes = _keyframes.size();
in->read(reinterpret_cast<char*>(&nKeyframes), sizeof(int64_t));
for (TimeKeyframe& k : _keyframes) {
k.read(in);
}
};
};
struct ScriptMessage {
ScriptMessage() = default;
ScriptMessage(const std::vector<char>& buffer) {
deserialize(buffer);
}
virtual ~ScriptMessage() {};
std::string _script;
double _timestamp = 0.0;
void serialize(std::vector<char>& buffer) const {
uint32_t strLen = static_cast<uint32_t>(_script.size());
const char* p = reinterpret_cast<const char*>(&strLen);
buffer.insert(buffer.end(), p, p + sizeof(uint32_t));
buffer.insert(buffer.end(), _script.begin(), _script.end());
};
void deserialize(const std::vector<char>& buffer) {
const char* p = buffer.data();
const uint32_t len = *reinterpret_cast<const uint32_t*>(p);
if (buffer.size() != (sizeof(uint32_t) + len)) {
LERRORC(
"ParallelPeer",
fmt::format(
"Received buffer with wrong size. Expected {} got {}",
len, buffer.size()
)
);
return;
}
// We can skip over the first uint32_t that encoded the length
_script.assign(buffer.begin() + sizeof(uint32_t), buffer.end());
};
void write(std::ostream* out) const {
out->write(_script.c_str(), _script.size());
};
void write(unsigned char* buf, size_t& idx, std::ofstream& file) const {
size_t strLen = _script.size();
size_t writeSize_bytes = sizeof(size_t);
unsigned char const *p = reinterpret_cast<unsigned char const*>(&strLen);
memcpy((buf + idx), p, writeSize_bytes);
idx += static_cast<unsigned int>(writeSize_bytes);
memcpy((buf + idx), _script.c_str(), _script.size());
idx += static_cast<unsigned int>(strLen);
file.write(reinterpret_cast<char*>(buf), idx);
//Write directly to file because some scripts can be very long
file.write(_script.c_str(), _script.size());
};
void write(std::stringstream& ss) const {
unsigned int numLinesInScript = static_cast<unsigned int>(
std::count(_script.begin(), _script.end(), '\n')
);
ss << ' ' << (numLinesInScript + 1) << ' ';
ss << _script;
}
virtual void read(std::istream* in) {
uint32_t strLen;
//Read string length from file
in->read(reinterpret_cast<char*>(&strLen), sizeof(strLen));
//Read back full string
std::vector<char> temp(strLen + 1);
in->read(temp.data(), strLen);
temp[strLen] = '\0';
_script.erase();
_script = temp.data();
};
void read(std::istringstream& iss) {
int numScriptLines;
iss >> numScriptLines;
if (numScriptLines < 0) {
numScriptLines = 0;
}
std::string tmpReadbackScript;
_script.erase();
for (int i = 0; i < numScriptLines; ++i) {
std::getline(iss, tmpReadbackScript);
size_t start = tmpReadbackScript.find_first_not_of(" ");
tmpReadbackScript = tmpReadbackScript.substr(start);
_script.append(tmpReadbackScript);
if (i < (numScriptLines - 1)) {
_script.append("\n");
}
}
};
};
} // namespace openspace::messagestructures
#endif // __OPENSPACE_CORE___MESSAGESTRUCTURES___H__