Files
OpenSpace/modules/base/rendering/grids/renderablesphericalgrid.cpp
2025-09-07 16:56:59 +02:00

358 lines
14 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2025 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/base/rendering/grids/renderablesphericalgrid.h>
#include <modules/base/basemodule.h>
#include <openspace/engine/globals.h>
#include <openspace/rendering/renderengine.h>
#include <openspace/util/updatestructures.h>
#include <openspace/documentation/verifier.h>
#include <ghoul/glm.h>
#include <ghoul/filesystem/filesystem.h>
#include <ghoul/opengl/openglstatecache.h>
#include <ghoul/opengl/programobject.h>
#include <optional>
namespace {
constexpr openspace::properties::Property::PropertyInfo ColorInfo = {
"Color",
"Color",
"The color of the grid lines.",
openspace::properties::Property::Visibility::NoviceUser
};
constexpr openspace::properties::Property::PropertyInfo LongSegmentsInfo = {
"LongSegments",
"Number of longitudinal segments",
"The number of longitudinal segments the sphere is split into. Determines the "
"resolution of the rendered sphere in a left/right direction when looking "
"straight at the equator. Should be an even value (if an odd value is provided, "
"the value will be set to the new value minus one). If the `Segments` value is "
"provided as well, it will have precedence over this value",
openspace::properties::Property::Visibility::User
};
constexpr openspace::properties::Property::PropertyInfo LatSegmentsInfo = {
"LatSegments",
"Number of latitudinal segments",
"The number of latitudinal segments the sphere is split into. Determines the "
"resolution of the rendered sphere in a up/down direction when looking "
"straight at the equator. Should be an even value (if an odd value is provided, "
"the value will be set to the new value minus one). If the `Segments` value is "
"provided as well, it will have precedence over this value",
openspace::properties::Property::Visibility::User
};
constexpr openspace::properties::Property::PropertyInfo LineWidthInfo = {
"LineWidth",
"Line width",
"The width of the grid lines. The larger number, the thicker the lines.",
openspace::properties::Property::Visibility::NoviceUser
};
const openspace::properties::PropertyOwner::PropertyOwnerInfo LabelsInfo = {
"Labels",
"Labels",
"The labels for the grid."
};
// This `Renderable` creates a grid in the shape of a sphere. Note that the sphere
// will always be given a radius of one meter. To change its size, use a `Scale`
// transform, such as the [StaticScale](#base_transform_scale_static).
//
// The grid may be split up into equal segments in both directions using the
// `Segments` parameter, or different number of segments in the latitudal and
// longtudal direction using the `LatSegments` and `LongSegments` parameters.
struct [[codegen::Dictionary(RenderableSphericalGrid)]] Parameters {
// [[codegen::verbatim(ColorInfo.description)]]
std::optional<glm::vec3> color [[codegen::color()]];
// [[codegen::verbatim(LongSegmentsInfo.description)]]
std::optional<int> longSegments;
// [[codegen::verbatim(LatSegmentsInfo.description)]]
std::optional<int> latSegments;
// The number of segments the sphere is split into. Determines the resolution
// of the rendered sphere. Should be an even value (if an odd value is provided,
// the value will be set to the new value minus one). Setting this value is equal
// to setting `LongSegments` and `LatSegments` to the same value. If this value is
// specified, it will overwrite the values provided in `LongSegments` and
//`LatSegments`.
std::optional<int> segments;
// [[codegen::verbatim(LineWidthInfo.description)]]
std::optional<float> lineWidth;
// [[codegen::verbatim(LabelsInfo.description)]]
std::optional<ghoul::Dictionary> labels
[[codegen::reference("labelscomponent")]];
};
#include "renderablesphericalgrid_codegen.cpp"
} // namespace
namespace openspace {
documentation::Documentation RenderableSphericalGrid::Documentation() {
return codegen::doc<Parameters>("base_renderable_sphericalgrid");
}
RenderableSphericalGrid::RenderableSphericalGrid(const ghoul::Dictionary& dictionary)
: Renderable(dictionary)
, _gridProgram(nullptr)
, _color(ColorInfo, glm::vec3(0.5f), glm::vec3(0.f), glm::vec3(1.f))
, _longSegments(LongSegmentsInfo, 36, 4, 200)
, _latSegments(LatSegmentsInfo, 36, 4, 200)
, _lineWidth(LineWidthInfo, 0.5f, 1.f, 20.f)
{
const Parameters p = codegen::bake<Parameters>(dictionary);
addProperty(Fadeable::_opacity);
_color = p.color.value_or(_color);
_color.setViewOption(properties::Property::ViewOptions::Color);
addProperty(_color);
auto gridDirty = [this]() {
if (_longSegments.value() % 2 == 1) {
_longSegments = _longSegments - 1;
}
_gridIsDirty = true;
};
_longSegments = p.segments.value_or(p.longSegments.value_or(_longSegments));
_longSegments.onChange(gridDirty);
addProperty(_longSegments);
_latSegments = p.segments.value_or(p.latSegments.value_or(_latSegments));
_latSegments.onChange(gridDirty);
addProperty(_latSegments);
_lineWidth = p.lineWidth.value_or(_lineWidth);
addProperty(_lineWidth);
// Radius is always 1
setBoundingSphere(1.0);
if (p.labels.has_value()) {
_labels = std::make_unique<LabelsComponent>(*p.labels);
_hasLabels = true;
addPropertySubOwner(_labels.get());
// Fading of the labels should also depend on the fading of the renderable
_labels->setParentFadeable(this);
}
}
bool RenderableSphericalGrid::isReady() const {
return _gridProgram && (_hasLabels ? _labels->isReady() : true);
}
void RenderableSphericalGrid::initialize() {
if (_hasLabels) {
_labels->initialize();
}
}
void RenderableSphericalGrid::initializeGL() {
_gridProgram = BaseModule::ProgramObjectManager.request(
"GridProgram",
[]() -> std::unique_ptr<ghoul::opengl::ProgramObject> {
return global::renderEngine->buildRenderProgram(
"GridProgram",
absPath("${MODULE_BASE}/shaders/grid_vs.glsl"),
absPath("${MODULE_BASE}/shaders/grid_fs.glsl")
);
}
);
glGenVertexArrays(1, &_vaoID);
glGenBuffers(1, &_vBufferID);
glGenBuffers(1, &_iBufferID);
glBindVertexArray(_vaoID);
glBindBuffer(GL_ARRAY_BUFFER, _vBufferID);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _iBufferID);
glEnableVertexAttribArray(0);
glBindVertexArray(0);
}
void RenderableSphericalGrid::deinitializeGL() {
glDeleteVertexArrays(1, &_vaoID);
_vaoID = 0;
glDeleteBuffers(1, &_vBufferID);
_vBufferID = 0;
glDeleteBuffers(1, &_iBufferID);
_iBufferID = 0;
BaseModule::ProgramObjectManager.release(
"GridProgram",
[](ghoul::opengl::ProgramObject* p) {
global::renderEngine->removeRenderProgram(p);
}
);
_gridProgram = nullptr;
}
void RenderableSphericalGrid::render(const RenderData& data, RendererTasks&) {
_gridProgram->activate();
auto [modelTransform, modelViewTransform, modelViewProjectionTransform] =
calcAllTransforms(data);
_gridProgram->setUniform("modelViewTransform", modelViewTransform);
_gridProgram->setUniform("MVPTransform", modelViewProjectionTransform);
_gridProgram->setUniform("opacity", opacity());
_gridProgram->setUniform("gridColor", _color);
// Change GL state:
#ifndef __APPLE__
glLineWidth(_lineWidth);
#else // ^^^^ !__APPLE__ // __APPLE__ vvvv
glLineWidth(1.f);
#endif // __APPLE__
glEnablei(GL_BLEND, 0);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_LINE_SMOOTH);
glBindVertexArray(_vaoID);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _iBufferID);
glDrawElements(GL_LINES, 6 * _longSegments * _latSegments, GL_UNSIGNED_INT, nullptr);
glBindVertexArray(0);
_gridProgram->deactivate();
// Restore GL State
global::renderEngine->openglStateCache().resetBlendState();
global::renderEngine->openglStateCache().resetLineState();
global::renderEngine->openglStateCache().resetDepthState();
// Draw labels
if (_hasLabels && _labels->enabled()) {
const glm::vec3 lookup = data.camera.lookUpVectorWorldSpace();
const glm::vec3 viewDirection = data.camera.viewDirectionWorldSpace();
glm::vec3 right = glm::cross(viewDirection, lookup);
const glm::vec3 up = glm::cross(right, viewDirection);
const glm::dmat4 worldToModelTransform = glm::inverse(modelTransform);
glm::vec3 orthoRight = glm::normalize(
glm::vec3(worldToModelTransform * glm::vec4(right, 0.f))
);
if (orthoRight == glm::vec3(0.f)) {
const glm::vec3 otherVector = glm::vec3(lookup.y, lookup.x, lookup.z);
right = glm::cross(viewDirection, otherVector);
orthoRight = glm::normalize(
glm::vec3(worldToModelTransform * glm::vec4(right, 0.f))
);
}
const glm::vec3 orthoUp = glm::normalize(
glm::vec3(worldToModelTransform * glm::dvec4(up, 0.0))
);
_labels->render(data, modelViewProjectionTransform, orthoRight, orthoUp);
}
// Reset
global::renderEngine->openglStateCache().resetBlendState();
global::renderEngine->openglStateCache().resetLineState();
global::renderEngine->openglStateCache().resetDepthState();
}
void RenderableSphericalGrid::update(const UpdateData&) {
if (!_gridIsDirty) [[likely]] {
return;
}
unsigned int vertSize = (_longSegments + 1) * (_latSegments + 1);
std::vector<Vertex> vert = std::vector<Vertex>(vertSize, { 0.f, 0.f, 0.f });
unsigned int idxSize = 6 * _longSegments * _latSegments;
std::vector<int> idx = std::vector<int>(idxSize, 0);
int nr = 0;
for (int lat = 0; lat <= _latSegments; lat++) {
// define an extra vertex around the y-axis due to texture mapping
for (int lng = 0; lng <= _longSegments; lng++) {
// inclination angle (north to south)
const float theta = lat * glm::pi<float>() / _latSegments * 2.f; // 0 -> PI
// azimuth angle (east to west)
const float phi = lng * 2.f * glm::pi<float>() / _longSegments; // 0 -> 2*PI
const float x = std::sin(phi) * std::sin(theta); //
const float y = std::cos(theta); // up
const float z = std::cos(phi) * std::sin(theta); //
glm::vec3 normal = glm::vec3(x, y, z);
if (x != 0.f || y != 0.f || z != 0.f) {
normal = glm::normalize(normal);
}
glm::vec4 tmp = glm::vec4(x, y, z, 1.f);
const glm::mat4 rot = glm::rotate(
glm::mat4(1.f),
glm::half_pi<float>(),
glm::vec3(1.f, 0.f, 0.f)
);
tmp = glm::vec4(glm::dmat4(rot) * glm::dvec4(tmp));
for (int i = 0; i < 3; i++) {
vert[nr].location[i] = tmp[i];
}
++nr;
}
}
nr = 0;
// define indices for all triangles
for (int i = 1; i <= _latSegments; i++) {
for (int j = 0; j < _longSegments; j++) {
const int t = _longSegments + 1;
idx[nr] = t * (i - 1) + j + 0; ++nr;
idx[nr] = t * (i + 0) + j + 0; ++nr;
idx[nr] = t * (i + 0) + j + 1; ++nr;
idx[nr] = t * (i - 1) + j + 1; ++nr;
idx[nr] = t * (i - 1) + j + 0; ++nr;
}
}
glBindVertexArray(_vaoID);
glBindBuffer(GL_ARRAY_BUFFER, _vBufferID);
glBufferData(GL_ARRAY_BUFFER, vertSize * sizeof(Vertex), vert.data(), GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), nullptr);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _iBufferID);
glBufferData(
GL_ELEMENT_ARRAY_BUFFER,
idxSize * sizeof(int),
idx.data(), GL_STATIC_DRAW
);
_gridIsDirty = false;
}
} // namespace openspace