mirror of
https://github.com/DRYTRIX/TimeTracker.git
synced 2026-01-04 18:51:53 -06:00
This commit implements a complete architectural transformation of the TimeTracker application, introducing modern design patterns and comprehensive feature set. ## Architecture Improvements ### Service Layer (18 Services) - TimeTrackingService: Time entry management with timer functionality - ProjectService: Project operations and lifecycle management - InvoiceService: Invoice creation, management, and status tracking - TaskService: Task management and workflow - ExpenseService: Expense tracking and categorization - ClientService: Client relationship management - PaymentService: Payment processing and invoice reconciliation - CommentService: Comment system for projects, tasks, and quotes - UserService: User management and role operations - NotificationService: Notification delivery system - ReportingService: Report generation and analytics - AnalyticsService: Event tracking and analytics - ExportService: CSV export functionality - ImportService: CSV import with validation - EmailService: Email operations and invoice delivery - PermissionService: Role-based permission management - BackupService: Database backup operations - HealthService: System health checks and monitoring ### Repository Layer (9 Repositories) - BaseRepository: Generic CRUD operations - TimeEntryRepository: Time entry data access - ProjectRepository: Project data access with filtering - InvoiceRepository: Invoice queries and status management - TaskRepository: Task data access - ExpenseRepository: Expense data access - ClientRepository: Client data access - UserRepository: User data access - PaymentRepository: Payment data access - CommentRepository: Comment data access ### Schema Layer (9 Schemas) - Marshmallow schemas for validation and serialization - Create, update, and full schemas for all entities - Input validation and data transformation ### Utility Modules (15 Utilities) - api_responses: Standardized API response helpers - validation: Input validation utilities - query_optimization: N+1 query prevention and eager loading - error_handlers: Centralized error handling - cache: Caching foundation (Redis-ready) - transactions: Transaction management decorators - event_bus: Domain event system - performance: Performance monitoring decorators - logger: Enhanced structured logging - pagination: Pagination utilities - file_upload: Secure file upload handling - search: Full-text search utilities - rate_limiting: Rate limiting helpers - config_manager: Configuration management - datetime_utils: Enhanced date/time utilities ## Database Improvements - Performance indexes migration (15+ indexes) - Query optimization utilities - N+1 query prevention patterns ## Testing Infrastructure - Comprehensive test fixtures (conftest.py) - Service layer unit tests - Repository layer unit tests - Integration test examples ## CI/CD Pipeline - GitHub Actions workflow - Automated linting (Black, Flake8, Pylint) - Security scanning (Bandit, Safety, Semgrep) - Automated testing with coverage - Docker image builds ## Documentation - Architecture migration guide - Quick start guide - API enhancements documentation - Implementation summaries - Refactored route examples ## Key Benefits - Separation of concerns: Business logic decoupled from routes - Testability: Services and repositories can be tested in isolation - Maintainability: Consistent patterns across codebase - Performance: Database indexes and query optimization - Security: Input validation and security scanning - Scalability: Event-driven architecture and health checks ## Statistics - 70+ new files created - 8,000+ lines of code - 18 services, 9 repositories, 9 schemas - 15 utility modules - 5 test files with examples This transformation establishes a solid foundation for future development and follows industry best practices for maintainable, scalable applications.
2.7 KiB
2.7 KiB
API Documentation Enhancements
This document describes the enhancements made to the API documentation and response handling.
Response Format Standardization
All API endpoints now use consistent response formats:
Success Response
{
"success": true,
"message": "Optional success message",
"data": { ... }
}
Error Response
{
"success": false,
"error": "error_code",
"message": "Error message",
"errors": {
"field": ["Error message"]
},
"details": { ... }
}
Response Helpers
The app/utils/api_responses.py module provides helper functions:
success_response()- Create success responseserror_response()- Create error responsesvalidation_error_response()- Create validation error responsesnot_found_response()- Create 404 responsesunauthorized_response()- Create 401 responsesforbidden_response()- Create 403 responsespaginated_response()- Create paginated list responsescreated_response()- Create 201 Created responsesno_content_response()- Create 204 No Content responses
Usage Example
from app.utils.api_responses import success_response, error_response, paginated_response
@api_v1_bp.route('/projects', methods=['GET'])
def list_projects():
projects = Project.query.all()
return paginated_response(
items=[p.to_dict() for p in projects],
page=1,
per_page=50,
total=len(projects)
)
@api_v1_bp.route('/projects/<int:project_id>', methods=['GET'])
def get_project(project_id):
project = Project.query.get(project_id)
if not project:
return not_found_response('Project', project_id)
return success_response(data=project.to_dict())
Error Handling
Enhanced error handling is provided in app/utils/error_handlers.py:
- Automatic error response formatting for API endpoints
- Marshmallow validation error handling
- Database integrity error handling
- SQLAlchemy error handling
- Generic exception handling
OpenAPI/Swagger Documentation
The API documentation is available at /api/docs and includes:
- Complete endpoint documentation
- Request/response schemas
- Authentication information
- Error response examples
- Code examples
Schema Validation
All API endpoints should use Marshmallow schemas for validation:
from app.schemas import ProjectCreateSchema
@api_v1_bp.route('/projects', methods=['POST'])
def create_project():
schema = ProjectCreateSchema()
try:
data = schema.load(request.get_json())
except ValidationError as err:
return validation_error_response(err.messages)
# Create project...
return created_response(project.to_dict())