Files
UnleashedRecomp-hedge-dev/UnleashedRecomp/patches/fps_patches.cpp

198 lines
5.9 KiB
C++

#include <kernel/memory.h>
#include <api/SWA.h>
#include <ui/game_window.h>
#include <user/config.h>
#include <app.h>
void DownForceDeltaTimeFixMidAsmHook(PPCRegister& f0)
{
f0.f64 = 30.0;
}
void DownForceDeltaTimeFixMidAsmHook(PPCVRegister& v127, PPCRegister& f24)
{
double factor = 1.0 / (f24.f64 * 30.0);
v127.f32[0] *= factor;
v127.f32[1] *= factor;
v127.f32[2] *= factor;
v127.f32[3] *= factor;
}
void HighFrameRateDeltaTimeFixMidAsmHook(PPCRegister& f1)
{
// Having 60 FPS threshold ensures we still retain
// the original game behavior when locked to 30/60 FPS.
constexpr double threshold = 1.0 / 60.0;
if (f1.f64 < threshold)
f1.f64 = threshold;
}
// This hook expects the vector register to store delta time at the first index.
void HighFrameRateDeltaTimeFixVectorMidAsmHook(PPCVRegister& v62)
{
// Having 60 FPS threshold ensures we still retain
// the original game behavior when locked to 30/60 FPS.
constexpr double threshold = 1.0 / 60.0;
if (v62.f32[3] < threshold)
v62.f32[3] = threshold;
}
void CameraDeltaTimeFixMidAsmHook(PPCRegister& dest, PPCRegister& src)
{
dest.f64 = src.f64 / 30.0;
}
void CameraDeltaTimeFixMidAsmHook(PPCRegister& dest)
{
dest.f64 /= 30.0;
}
static double ComputeLerpFactor(double t, double deltaTime)
{
// This type of lerp still falls behind when
// playing catch with a constantly moving position.
// The bias helps with approximately bringing it closer.
double fps = 1.0 / deltaTime;
double bias = t * 60.0;
return 1.0 - pow(1.0 - t, (30.0 + bias) / (fps + bias));
}
// It's important to use global delta time here instead of function provided
// delta time, as it might be time scaled and not match with 30 FPS behavior.
void CameraLerpFixMidAsmHook(PPCRegister& t)
{
t.f64 = ComputeLerpFactor(t.f64, App::s_deltaTime);
}
void CameraTargetSideOffsetLerpFixMidAsmHook(PPCVRegister& v13, PPCVRegister& v62)
{
float factor = float(ComputeLerpFactor(double(v13.f32[0] * v62.f32[0]), App::s_deltaTime));
for (size_t i = 0; i < 4; i++)
{
v62.f32[i] = factor;
v13.f32[i] = 1.0f;
}
}
void Camera2DLerpFixMidAsmHook(PPCRegister& t, PPCRegister& deltaTime)
{
t.f64 = ComputeLerpFactor(std::min<double>(1.0, t.f64 * 2.0), deltaTime.f64 / 60.0);
}
void Camera2DSlopeLerpFixMidAsmHook(PPCRegister& t, PPCRegister& deltaTime)
{
t.f64 = ComputeLerpFactor(t.f64, deltaTime.f64 / 60.0);
}
using namespace std::chrono_literals;
static std::chrono::steady_clock::time_point g_prev;
bool LoadingUpdateMidAsmHook(PPCRegister& r31)
{
auto now = std::chrono::steady_clock::now();
double deltaTime = std::min(std::chrono::duration<double>(now - g_prev).count(), 1.0 / 15.0);
g_prev = now;
uint8_t* base = g_memory.base;
uint32_t application = PPC_LOAD_U32(PPC_LOAD_U32(r31.u32 + 4));
uint32_t update = PPC_LOAD_U32(PPC_LOAD_U32(application) + 20);
g_ppcContext->r3.u32 = application;
g_ppcContext->f1.f64 = deltaTime;
g_memory.FindFunction(update)(*g_ppcContext, base);
bool loading = *SWA::SGlobals::ms_IsLoading;
if (loading)
{
now = std::chrono::steady_clock::now();
constexpr auto INTERVAL = 1000000000ns / 30;
auto next = now + (INTERVAL - now.time_since_epoch() % INTERVAL);
std::this_thread::sleep_until(next);
}
return loading;
}
// ADXM_WaitVsync
PPC_FUNC_IMPL(__imp__sub_8312DBF8);
PPC_FUNC(sub_8312DBF8)
{
auto now = std::chrono::steady_clock::now();
constexpr auto INTERVAL = 1000000000ns / 60;
auto next = now + (INTERVAL - now.time_since_epoch() % INTERVAL);
std::this_thread::sleep_until(next);
}
void WaitVsyncMidAsmHook()
{
}
void ApplicationFrameLimiterMidAsmHook()
{
}
// Tornado Defense boss increments timers without respecting delta time.
// We run the update function with a 30 FPS time step to ensure all timers update at the correct rate.
static constexpr size_t EX_STAGE_BOSS_STATE_BATTLE_SIZE = 0x70;
void CExStageBossCStateBattleAllocMidAsmHook(PPCRegister& r3)
{
r3.u32 += sizeof(float);
}
void CExStageBossCStateBattleCtorMidAsmHook(PPCRegister& r3)
{
new (g_memory.base + r3.u32 + EX_STAGE_BOSS_STATE_BATTLE_SIZE) float(0);
}
// SWA::CExStageBoss::CStateBattle::Update
PPC_FUNC_IMPL(__imp__sub_82B00D00);
PPC_FUNC(sub_82B00D00)
{
constexpr auto referenceDeltaTime = 1.0f / 30.0f;
constexpr auto deltaTimeTolerance = 0.0001f;
auto pElapsedTime = (float*)(base + ctx.r3.u32 + EX_STAGE_BOSS_STATE_BATTLE_SIZE);
*pElapsedTime += std::min(App::s_deltaTime, 1.0 / 15.0);
if ((*pElapsedTime + deltaTimeTolerance) > referenceDeltaTime)
{
__imp__sub_82B00D00(ctx, base);
*pElapsedTime -= referenceDeltaTime;
}
*pElapsedTime = std::max(*pElapsedTime, 0.0f);
}
// Fix for Egg Dragoon's drill missile attack rotating 90 degrees at HFR.
void BossEggDragoonDrillMissileCMissileSetRotationMidAsmHook(PPCRegister& r4)
{
auto pRotation = (Hedgehog::Math::CQuaternion*)g_memory.Translate(r4.u32);
auto magnitude = std::sqrt(pRotation->X * pRotation->X + pRotation->Y * pRotation->Y + pRotation->Z * pRotation->Z + pRotation->W * pRotation->W);
if (magnitude < 0.0f)
return;
auto magnitudeNrm = 1.0f / magnitude;
pRotation->X = pRotation->X * magnitudeNrm;
pRotation->Y = pRotation->Y * magnitudeNrm;
pRotation->Z = pRotation->Z * magnitudeNrm;
pRotation->W = pRotation->W * magnitudeNrm;
}
bool SparkleLocusMidAsmHook()
{
// There is an epsilon check in sparkle locus particle code that seems to never pass at high frame rates, which causes vertex corruption.
// Checking for equality doesn't fix it either, so we can fix it by forcing it to always execute instead.
// This has the side effect of the locus particle eventually snapping to the rest position during pause, but it's better than vertices exploding.
return App::s_deltaTime < (1.0 / 60.0);
}