mirror of
https://github.com/trycua/computer.git
synced 2026-01-05 21:09:58 -06:00
added GTA1 agent and click benchmarks (ss-pro, repl)
This commit is contained in:
4
libs/python/agent/benchmarks/models/__init__.py
Normal file
4
libs/python/agent/benchmarks/models/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .base import ModelProtocol
|
||||
from .gta1 import GTA1Model
|
||||
|
||||
__all__ = ["ModelProtocol", "GTA1Model"]
|
||||
36
libs/python/agent/benchmarks/models/base.py
Normal file
36
libs/python/agent/benchmarks/models/base.py
Normal file
@@ -0,0 +1,36 @@
|
||||
"""
|
||||
Base protocol for benchmark models.
|
||||
"""
|
||||
|
||||
from typing import Protocol, Optional, Tuple
|
||||
from PIL import Image
|
||||
|
||||
|
||||
class ModelProtocol(Protocol):
|
||||
"""Protocol for benchmark models that can predict click coordinates."""
|
||||
|
||||
@property
|
||||
def model_name(self) -> str:
|
||||
"""Return the name of the model."""
|
||||
...
|
||||
|
||||
async def load_model(self) -> None:
|
||||
"""Load the model into memory."""
|
||||
...
|
||||
|
||||
async def unload_model(self) -> None:
|
||||
"""Unload the model from memory."""
|
||||
...
|
||||
|
||||
async def predict_click(self, image: Image.Image, instruction: str) -> Optional[Tuple[int, int]]:
|
||||
"""
|
||||
Predict click coordinates for the given image and instruction.
|
||||
|
||||
Args:
|
||||
image: PIL Image to analyze
|
||||
instruction: Text instruction describing what to click
|
||||
|
||||
Returns:
|
||||
Tuple of (x, y) coordinates or None if prediction fails
|
||||
"""
|
||||
...
|
||||
162
libs/python/agent/benchmarks/models/gta1.py
Normal file
162
libs/python/agent/benchmarks/models/gta1.py
Normal file
@@ -0,0 +1,162 @@
|
||||
"""
|
||||
GTA1 model implementation for benchmarking.
|
||||
"""
|
||||
|
||||
from typing import Optional, Tuple
|
||||
from PIL import Image
|
||||
import torch
|
||||
import re
|
||||
import gc
|
||||
from qwen_vl_utils import process_vision_info, smart_resize
|
||||
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
||||
|
||||
from .base import ModelProtocol
|
||||
|
||||
|
||||
class GTA1Model:
|
||||
"""Ground truth GTA1 model implementation."""
|
||||
|
||||
def __init__(self, model_path: str = "HelloKKMe/GTA1-7B"):
|
||||
self.model_path = model_path
|
||||
self.model = None
|
||||
self.processor = None
|
||||
self.max_new_tokens = 32
|
||||
|
||||
self.system_prompt = '''
|
||||
You are an expert UI element locator. Given a GUI image and a user's element description, provide the coordinates of the specified element as a single (x,y) point. The image resolution is height {height} and width {width}. For elements with area, return the center point.
|
||||
|
||||
Output the coordinate pair exactly:
|
||||
(x,y)
|
||||
'''.strip()
|
||||
|
||||
@property
|
||||
def model_name(self) -> str:
|
||||
"""Return the name of the model."""
|
||||
return f"GTA1-{self.model_path.split('/')[-1]}"
|
||||
|
||||
async def load_model(self) -> None:
|
||||
"""Load the model into memory."""
|
||||
if self.model is None:
|
||||
print(f"Loading GTA1 model: {self.model_path}")
|
||||
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
||||
self.model_path,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto"
|
||||
)
|
||||
self.processor = AutoProcessor.from_pretrained(
|
||||
self.model_path,
|
||||
min_pixels=3136,
|
||||
max_pixels=4096 * 2160
|
||||
)
|
||||
print("GTA1 model loaded successfully")
|
||||
|
||||
async def unload_model(self) -> None:
|
||||
"""Unload the model from memory."""
|
||||
if self.model is not None:
|
||||
print("Unloading GTA1 model from GPU...")
|
||||
del self.model
|
||||
del self.processor
|
||||
self.model = None
|
||||
self.processor = None
|
||||
gc.collect()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
print("GTA1 model unloaded")
|
||||
|
||||
def _extract_coordinates(self, raw_string: str) -> Tuple[int, int]:
|
||||
"""Extract coordinates from model output."""
|
||||
try:
|
||||
matches = re.findall(r"\((-?\d*\.?\d+),\s*(-?\d*\.?\d+)\)", raw_string)
|
||||
return tuple(map(int, map(float, matches[0]))) # type: ignore
|
||||
except:
|
||||
return (0, 0)
|
||||
|
||||
async def predict_click(self, image: Image.Image, instruction: str) -> Optional[Tuple[int, int]]:
|
||||
"""
|
||||
Predict click coordinates for the given image and instruction.
|
||||
|
||||
Args:
|
||||
image: PIL Image to analyze
|
||||
instruction: Text instruction describing what to click
|
||||
|
||||
Returns:
|
||||
Tuple of (x, y) coordinates or None if prediction fails
|
||||
"""
|
||||
if self.model is None or self.processor is None:
|
||||
await self.load_model()
|
||||
|
||||
assert self.processor is not None
|
||||
assert self.model is not None
|
||||
|
||||
try:
|
||||
width, height = image.width, image.height
|
||||
|
||||
# Resize image according to processor requirements
|
||||
resized_height, resized_width = smart_resize(
|
||||
image.height,
|
||||
image.width,
|
||||
factor=self.processor.image_processor.patch_size * self.processor.image_processor.merge_size,
|
||||
min_pixels=self.processor.image_processor.min_pixels,
|
||||
max_pixels=self.processor.image_processor.max_pixels,
|
||||
)
|
||||
resized_image = image.resize((resized_width, resized_height))
|
||||
scale_x, scale_y = width / resized_width, height / resized_height
|
||||
|
||||
# Prepare messages
|
||||
system_message = {
|
||||
"role": "system",
|
||||
"content": self.system_prompt.format(height=resized_height, width=resized_width)
|
||||
}
|
||||
|
||||
user_message = {
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "image": resized_image},
|
||||
{"type": "text", "text": instruction}
|
||||
]
|
||||
}
|
||||
|
||||
# Process inputs
|
||||
image_inputs, video_inputs = process_vision_info([system_message, user_message])
|
||||
text = self.processor.apply_chat_template(
|
||||
[system_message, user_message],
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
inputs = self.processor(
|
||||
text=[text],
|
||||
images=image_inputs,
|
||||
videos=video_inputs,
|
||||
padding=True,
|
||||
return_tensors="pt"
|
||||
)
|
||||
inputs = inputs.to(self.model.device)
|
||||
|
||||
# Generate prediction
|
||||
output_ids = self.model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=self.max_new_tokens,
|
||||
do_sample=False,
|
||||
temperature=1.0,
|
||||
use_cache=True
|
||||
)
|
||||
generated_ids = [
|
||||
output_ids[len(input_ids):]
|
||||
for input_ids, output_ids in zip(inputs.input_ids, output_ids)
|
||||
]
|
||||
output_text = self.processor.batch_decode(
|
||||
generated_ids,
|
||||
skip_special_tokens=True,
|
||||
clean_up_tokenization_spaces=True
|
||||
)[0]
|
||||
|
||||
# Extract and rescale coordinates
|
||||
pred_x, pred_y = self._extract_coordinates(output_text)
|
||||
pred_x = int(pred_x * scale_x)
|
||||
pred_y = int(pred_y * scale_y)
|
||||
|
||||
return (pred_x, pred_y)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error in GTA1 prediction: {e}")
|
||||
return None
|
||||
Reference in New Issue
Block a user