mirror of
https://github.com/trycua/computer.git
synced 2026-01-01 11:00:31 -06:00
159 lines
5.5 KiB
Python
159 lines
5.5 KiB
Python
"""
|
|
GTA1 model implementation for benchmarking.
|
|
"""
|
|
|
|
import gc
|
|
import re
|
|
from typing import Optional, Tuple
|
|
|
|
import torch
|
|
from PIL import Image
|
|
from qwen_vl_utils import process_vision_info, smart_resize
|
|
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
|
|
|
from .base import ModelProtocol
|
|
|
|
|
|
class GTA1Model:
|
|
"""Ground truth GTA1 model implementation."""
|
|
|
|
def __init__(self, model_path: str = "HelloKKMe/GTA1-7B"):
|
|
self.model_path = model_path
|
|
self.model = None
|
|
self.processor = None
|
|
self.max_new_tokens = 32
|
|
|
|
self.system_prompt = """
|
|
You are an expert UI element locator. Given a GUI image and a user's element description, provide the coordinates of the specified element as a single (x,y) point. The image resolution is height {height} and width {width}. For elements with area, return the center point.
|
|
|
|
Output the coordinate pair exactly:
|
|
(x,y)
|
|
""".strip()
|
|
|
|
@property
|
|
def model_name(self) -> str:
|
|
"""Return the name of the model."""
|
|
return f"GTA1-{self.model_path.split('/')[-1]}"
|
|
|
|
async def load_model(self) -> None:
|
|
"""Load the model into memory."""
|
|
if self.model is None:
|
|
print(f"Loading GTA1 model: {self.model_path}")
|
|
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
self.model_path, torch_dtype=torch.bfloat16, device_map="auto"
|
|
)
|
|
self.processor = AutoProcessor.from_pretrained(
|
|
self.model_path, min_pixels=3136, max_pixels=4096 * 2160
|
|
)
|
|
print("GTA1 model loaded successfully")
|
|
|
|
async def unload_model(self) -> None:
|
|
"""Unload the model from memory."""
|
|
if self.model is not None:
|
|
print("Unloading GTA1 model from GPU...")
|
|
del self.model
|
|
del self.processor
|
|
self.model = None
|
|
self.processor = None
|
|
gc.collect()
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
print("GTA1 model unloaded")
|
|
|
|
def _extract_coordinates(self, raw_string: str) -> Tuple[int, int]:
|
|
"""Extract coordinates from model output."""
|
|
try:
|
|
matches = re.findall(r"\((-?\d*\.?\d+),\s*(-?\d*\.?\d+)\)", raw_string)
|
|
return tuple(map(int, map(float, matches[0]))) # type: ignore
|
|
except:
|
|
return (0, 0)
|
|
|
|
async def predict_click(
|
|
self, image: Image.Image, instruction: str
|
|
) -> Optional[Tuple[int, int]]:
|
|
"""
|
|
Predict click coordinates for the given image and instruction.
|
|
|
|
Args:
|
|
image: PIL Image to analyze
|
|
instruction: Text instruction describing what to click
|
|
|
|
Returns:
|
|
Tuple of (x, y) coordinates or None if prediction fails
|
|
"""
|
|
if self.model is None or self.processor is None:
|
|
await self.load_model()
|
|
|
|
assert self.processor is not None
|
|
assert self.model is not None
|
|
|
|
try:
|
|
width, height = image.width, image.height
|
|
|
|
# Resize image according to processor requirements
|
|
resized_height, resized_width = smart_resize(
|
|
image.height,
|
|
image.width,
|
|
factor=self.processor.image_processor.patch_size
|
|
* self.processor.image_processor.merge_size,
|
|
min_pixels=self.processor.image_processor.min_pixels,
|
|
max_pixels=self.processor.image_processor.max_pixels,
|
|
)
|
|
resized_image = image.resize((resized_width, resized_height))
|
|
scale_x, scale_y = width / resized_width, height / resized_height
|
|
|
|
# Prepare messages
|
|
system_message = {
|
|
"role": "system",
|
|
"content": self.system_prompt.format(height=resized_height, width=resized_width),
|
|
}
|
|
|
|
user_message = {
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image", "image": resized_image},
|
|
{"type": "text", "text": instruction},
|
|
],
|
|
}
|
|
|
|
# Process inputs
|
|
image_inputs, video_inputs = process_vision_info([system_message, user_message]) # type: ignore
|
|
text = self.processor.apply_chat_template(
|
|
[system_message, user_message], tokenize=False, add_generation_prompt=True
|
|
)
|
|
inputs = self.processor(
|
|
text=[text],
|
|
images=image_inputs,
|
|
videos=video_inputs,
|
|
padding=True,
|
|
return_tensors="pt",
|
|
)
|
|
inputs = inputs.to(self.model.device)
|
|
|
|
# Generate prediction
|
|
output_ids = self.model.generate(
|
|
**inputs,
|
|
max_new_tokens=self.max_new_tokens,
|
|
do_sample=False,
|
|
temperature=1.0,
|
|
use_cache=True,
|
|
)
|
|
generated_ids = [
|
|
output_ids[len(input_ids) :]
|
|
for input_ids, output_ids in zip(inputs.input_ids, output_ids)
|
|
]
|
|
output_text = self.processor.batch_decode(
|
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
|
)[0]
|
|
|
|
# Extract and rescale coordinates
|
|
pred_x, pred_y = self._extract_coordinates(output_text)
|
|
pred_x = int(pred_x * scale_x)
|
|
pred_y = int(pred_y * scale_y)
|
|
|
|
return (pred_x, pred_y)
|
|
|
|
except Exception as e:
|
|
print(f"Error in GTA1 prediction: {e}")
|
|
return None
|