Files
computer/notebooks/agent_nb.ipynb
2025-03-20 00:17:30 +01:00

232 lines
5.8 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Agent\n",
"\n",
"This notebook demonstrates how to use Cua's Agent to run a workflow in a virtual sandbox on Apple Silicon Macs."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Installation"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"zsh:1: no matches found: cua-agent[all]\n"
]
}
],
"source": [
"!pip uninstall cua-agent[all]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install \"cua-agent[all]\"\n",
"\n",
"# Or install individual agent loops:\n",
"# !pip install cua-agent[anthropic]\n",
"# !pip install cua-agent[omni]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# If locally installed, use this instead:\n",
"import os\n",
"\n",
"os.chdir('../libs/agent')\n",
"!poetry install\n",
"!poetry build\n",
"\n",
"!pip uninstall cua-agent -y\n",
"!pip install ./dist/cua_agent-0.1.0-py3-none-any.whl --force-reinstall"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize a Computer Agent"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Computer allows you to run an agentic workflow in a virtual sandbox instances on Apple Silicon. Here's a basic example:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from agent import AgentLoop, LLMProvider\n",
"from computer import Computer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Similar to Computer, you can either use the async context manager pattern or initialize the ComputerAgent instance directly."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"os.environ[\"ANTHROPIC_API_KEY\"] = \"your-anthropic-api-key\"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"your-openai-api-key\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Direct initialization:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datetime import datetime\n",
"import logging\n",
"from pathlib import Path\n",
"from agent.core.computer_agent import ComputerAgent, LLM\n",
"\n",
"computer = Computer(verbosity=logging.INFO)\n",
"\n",
"# Create agent with Anthropic loop and provider\n",
"agent = ComputerAgent(\n",
" computer=computer,\n",
" loop=AgentLoop.ANTHROPIC,\n",
" # loop=AgentLoop.OMNI,\n",
" model=LLM(provider=LLMProvider.ANTHROPIC, name=\"claude-3-7-sonnet-20250219\"),\n",
" # model=LLM(provider=LLMProvider.OPENAI, name=\"gpt-4.5-preview\"),\n",
" save_trajectory=True,\n",
" trajectory_dir=str(Path(\"trajectories\")),\n",
" only_n_most_recent_images=3,\n",
" verbosity=logging.INFO\n",
" )\n",
"\n",
"tasks = [\n",
"\"\"\"\n",
"Please help me with the following task:\n",
"1. Open Safari browser\n",
"2. Go to Wikipedia.org\n",
"3. Search for \"Claude AI\" \n",
"4. Summarize the main points you find about Claude AI\n",
"\"\"\"\n",
"]\n",
"\n",
"async with agent:\n",
" for i, task in enumerate(tasks, 1):\n",
" print(f\"\\nExecuting task {i}/{len(tasks)}: {task}\")\n",
" async for result in agent.run(task):\n",
" print(result)\n",
" print(f\"Task {i} completed\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Or using the Omni Agentic Loop:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datetime import datetime\n",
"import logging\n",
"from pathlib import Path\n",
"\n",
"computer = Computer(verbosity=logging.INFO)\n",
"\n",
"# Create agent with Anthropic loop and provider\n",
"agent = ComputerAgent(\n",
" computer=computer,\n",
" # loop=AgentLoop.ANTHROPIC,\n",
" loop=AgentLoop.OMNI,\n",
" model=LLM(provider=LLMProvider.OPENAI, name=\"gpt-4.5-preview\"),\n",
" # model=LLM(provider=LLMProvider.ANTHROPIC, name=\"claude-3-7-sonnet-20250219\"),\n",
" save_trajectory=True,\n",
" trajectory_dir=str(Path(\"trajectories\")),\n",
" only_n_most_recent_images=3,\n",
" verbosity=logging.INFO,\n",
")\n",
"\n",
"tasks = [\n",
"\"\"\"\n",
"Please help me with the following task:\n",
"1. Open Safari browser\n",
"2. Go to Wikipedia.org\n",
"3. Search for \"Claude AI\" \n",
"4. Summarize the main points you find about Claude AI\n",
"\"\"\"\n",
"]\n",
"\n",
"async with agent:\n",
" for i, task in enumerate(tasks, 1):\n",
" print(f\"\\nExecuting task {i}/{len(tasks)}: {task}\")\n",
" async for result in agent.run(task):\n",
" print(result)\n",
" print(f\"Task {i} completed\")\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}