Files
computer/libs/python/agent/benchmarks
Dillon DuPont 8aef7b8b1a updated metrics
2025-07-30 16:12:51 -04:00
..
2025-07-30 13:41:58 -04:00
2025-07-30 13:41:58 -04:00
2025-07-30 16:12:51 -04:00
2025-07-30 16:12:51 -04:00
2025-07-30 16:12:51 -04:00
2025-07-30 16:12:51 -04:00

Computer Agent Benchmarks

This directory contains benchmarks designed to test agent providers in the Computer Agent SDK against reference agent implementations.

Overview

The benchmark system evaluates models on GUI grounding tasks, specifically click prediction accuracy. It supports both:

  • Computer Agent SDK providers (using model strings like "huggingface-local/HelloKKMe/GTA1-7B")
  • Reference agent implementations (custom model classes implementing the ModelProtocol)

Available Benchmarks

1. ScreenSpot-v2 (ss-v2.py)

  • Dataset: ScreenSpot-v2 (click-only GUI grounding)
  • Format: Standard resolution screenshots
  • Task: Predict click coordinates given an instruction and image
  • Metrics: Accuracy, Error Rate, Timing, VRAM usage

2. ScreenSpot-Pro (ss-pro.py)

  • Dataset: ScreenSpot-Pro (high-resolution click-only GUI grounding)
  • Format: High-resolution screenshots
  • Task: Predict click coordinates given an instruction and image
  • Metrics: Accuracy, Error Rate, Timing, VRAM usage

3. Interactive Testing (interactive.py)

  • Real-time testing: Take screenshots and visualize model predictions
  • Commands:
    • Type instruction → screenshot + test all models
    • screenshot → take screenshot without prediction
    • models → list available models
    • quit/exit → exit tool
  • Output: Visual predictions with crosshairs for each model

Adding Reference Agent Implementations

1. Implement the ModelProtocol

Create a new file in models/ directory implementing the ModelProtocol:

from models.base import ModelProtocol
from typing import Optional, Tuple
from PIL import Image

class YourModelName(ModelProtocol):
    def __init__(self, model_path: str):
        self.model_path = model_path
        self._model = None
    
    @property
    def model_name(self) -> str:
        return self.model_path
    
    async def load_model(self) -> None:
        """Load the model into memory."""
        # Your model loading logic here
        pass
    
    async def unload_model(self) -> None:
        """Unload the model from memory."""
        # Your model cleanup logic here
        pass
    
    async def predict_click(self, image: Image.Image, instruction: str) -> Optional[Tuple[int, int]]:
        """
        Predict click coordinates for the given image and instruction.
        
        Args:
            image: PIL Image to analyze
            instruction: Text instruction describing what to click
            
        Returns:
            Tuple of (x, y) coordinates or None if prediction fails
        """
        # Your prediction logic here
        return (x, y)  # Return predicted coordinates

2. Register Your Model

Add your model to the get_available_models() function in utils.py:

def get_available_models() -> List[Union[str, ModelProtocol]]:
    models = [
        # Computer Agent SDK providers
        "huggingface-local/HelloKKMe/GTA1-7B",
        
        # Reference implementations
        GTA1Model("HelloKKMe/GTA1-7B"),
        YourModelName("path/to/your/model"),  # Add your model here
    ]
    return models

Running Benchmarks

1. Configure Models

Edit utils.py to specify which models you want to test in get_available_models().

2. Run Benchmark

# ScreenSpot-v2 benchmark
python ss-v2.py --samples 50

# ScreenSpot-Pro benchmark  
python ss-pro.py --samples 50

# Interactive testing
python interactive.py

Output

Console Output

Model Results:
  Accuracy: 85.50% (171/200)
  Avg Time: 1.23s (0.89s - 2.45s)
  VRAM Usage: 4.5GB (max) / 3.4GB (avg)

Generated Files

  • Markdown Report: *_results.md with detailed results tables
  • Visualizations: output/ directory with prediction visualizations
  • Interactive Output: interactive_output/ for interactive session results

Metrics Tracked

  • Accuracy: Percentage of clicks within bounding boxes
  • Timing: Average, min, max prediction times
  • VRAM Usage: Maximum and average GPU memory usage
  • Per-sample Results: Detailed breakdown for debugging

Architecture

The benchmark system is designed for:

  • Modularity: Easy to add new models and benchmarks
  • Flexibility: Works with any iterator of dicts with image, bbox, instruction keys
  • Performance: VRAM tracking and timing analysis
  • Visualization: Automatic generation of prediction visualizations

Contributing

To add a new benchmark:

  1. Create a new script following the pattern in ss-v2.py
  2. Use the evaluate_model() function from utils
  3. Ensure your dataset yields dicts with image, bbox, instruction keys
  4. Update this README with benchmark details