Files
computer/docs/content/docs/agent-sdk/prompt-caching.mdx

55 lines
1.8 KiB
Plaintext

---
title: Prompt Caching
sidebar_position: 8
description: How to use prompt caching in ComputerAgent and agent loops.
---
Prompt caching is a cost-saving feature offered by some LLM API providers that helps avoid reprocessing the same prompt, improving efficiency and reducing costs for repeated or long-running tasks.
## Usage
The `use_prompt_caching` argument is available for `ComputerAgent` and agent loops:
```python
agent = ComputerAgent(
...,
use_prompt_caching=True,
)
```
- **Type:** `bool`
- **Default:** `False`
- **Purpose:** Use prompt caching to avoid reprocessing the same prompt.
## Anthropic CUAs
When using Anthropic-based CUAs (Claude models), setting `use_prompt_caching=True` will automatically add `{ "cache_control": "ephemeral" }` to your messages. This enables prompt caching for the session and can speed up repeated runs with the same prompt.
> **Note:** This argument is only required for Anthropic CUAs. For other providers, it is ignored.
## OpenAI Provider
With the OpenAI provider, prompt caching is handled automatically for prompts of 1000+ tokens. You do **not** need to set `use_prompt_caching`—caching will occur for long prompts without any extra configuration.
## Example
```python
from agent import ComputerAgent
agent = ComputerAgent(
model="anthropic/claude-3-5-sonnet-20241022",
use_prompt_caching=True,
)
```
## Implementation Details
- For Anthropic: Adds `{ "cache_control": "ephemeral" }` to messages when enabled.
- For OpenAI: Caching is automatic for long prompts; the argument is ignored.
## When to Use
- Enable for Anthropic CUAs if you want to avoid reprocessing the same prompt in repeated or iterative tasks.
- Not needed for OpenAI models unless you want explicit ephemeral cache control (not required for most users).
## See Also
- [Agent Loops](./agent-loops)
- [Migration Guide](./migration-guide)