mirror of
https://github.com/trycua/cua.git
synced 2025-12-21 09:59:55 -06:00
3.3 KiB
3.3 KiB
Som (Set-of-Mark) is a visual grounding component for the Computer-Use Agent (CUA) framework powering Cua, for detecting and analyzing UI elements in screenshots. Optimized for macOS Silicon with Metal Performance Shaders (MPS), it combines YOLO-based icon detection with EasyOCR text recognition to provide comprehensive UI element analysis.
Features
- Optimized for Apple Silicon with MPS acceleration
- Icon detection using YOLO with multi-scale processing
- Text recognition using EasyOCR (GPU-accelerated)
- Automatic hardware detection (MPS → CUDA → CPU)
- Smart detection parameters tuned for UI elements
- Detailed visualization with numbered annotations
- Performance benchmarking tools
System Requirements
- Recommended: macOS with Apple Silicon
- Uses Metal Performance Shaders (MPS)
- Multi-scale detection enabled
- ~0.4s average detection time
- Supported: Any Python 3.11+ environment
- Falls back to CPU if no GPU available
- Single-scale detection on CPU
- ~1.3s average detection time
Installation
# Using PDM (recommended)
pdm install
# Using pip
pip install -e .
Quick Start
from som import OmniParser
from PIL import Image
# Initialize parser
parser = OmniParser()
# Process an image
image = Image.open("screenshot.png")
result = parser.parse(
image,
box_threshold=0.3, # Confidence threshold
iou_threshold=0.1, # Overlap threshold
use_ocr=True # Enable text detection
)
# Access results
for elem in result.elements:
if elem.type == "icon":
print(f"Icon: confidence={elem.confidence:.3f}, bbox={elem.bbox.coordinates}")
else: # text
print(f"Text: '{elem.content}', confidence={elem.confidence:.3f}")
Docs
Development
Test Data
- Place test screenshots in
examples/test_data/ - Not tracked in git to keep repository size manageable
- Default test image:
test_screen.png(1920x1080)
Running Tests
# Run benchmark with no OCR
python examples/omniparser_examples.py examples/test_data/test_screen.png --runs 5 --ocr none
# Run benchmark with OCR
python examples/omniparser_examples.py examples/test_data/test_screen.png --runs 5 --ocr easyocr
License
MIT License - See LICENSE file for details.