""" Test Load Testing Baseline Documents the implementation of load testing infrastructure for performance validation """ def test_load_testing_implementation(): """Test load testing baseline documentation""" print("Load Testing Baseline - Implementation") print("=" * 70) print() print("P2 Performance Validation:") print(" No documented throughput/latency benchmarks") print(" → Cannot detect performance regressions") print(" → No baseline for capacity planning") print(" → Unknown breaking points") print(" → No SLA guarantees") print() print("=" * 70) print() print("Implementation Locations:") print() locations = [ { 'file': 'load-tests/k6-load-test.js', 'type': 'k6 Load Test', 'scenarios': 4, 'description': 'JavaScript-based load testing with k6' }, { 'file': 'load-tests/locust-load-test.py', 'type': 'Locust Load Test', 'scenarios': 3, 'description': 'Python-based load testing with Locust' }, { 'file': 'load-tests/PERFORMANCE_BASELINES.md', 'type': 'Documentation', 'sections': 10, 'description': 'Performance targets and test procedures' } ] for i, loc in enumerate(locations, 1): print(f"{i}. {loc['file']}") print(f" Type: {loc['type']}") if 'scenarios' in loc: print(f" Scenarios: {loc['scenarios']}") if 'sections' in loc: print(f" Sections: {loc['sections']}") print(f" Description: {loc['description']}") print() print("=" * 70) print() print("Performance Targets (p50/p95/p99):") print() targets = [ { 'category': 'Overall', 'p50': '< 100ms', 'p95': '< 500ms', 'p99': '< 1000ms', 'notes': 'All requests combined' }, { 'category': 'Authentication', 'p50': '< 80ms', 'p95': '< 400ms', 'p99': '< 800ms', 'notes': 'Login/token validation' }, { 'category': 'REST Gateway', 'p50': '< 150ms', 'p95': '< 600ms', 'p99': '< 1200ms', 'notes': 'API proxying overhead' }, { 'category': 'GraphQL Gateway', 'p50': '< 200ms', 'p95': '< 800ms', 'p99': '< 1500ms', 'notes': 'Query/mutation processing' }, { 'category': 'SOAP Gateway', 'p50': '< 250ms', 'p95': '< 1000ms', 'p99': '< 2000ms', 'notes': 'XML processing overhead' }, { 'category': 'Health Check', 'p50': '< 10ms', 'p95': '< 50ms', 'p99': '< 100ms', 'notes': 'No database queries' } ] for target in targets: print(f"{target['category']}:") print(f" p50: {target['p50']}") print(f" p95: {target['p95']}") print(f" p99: {target['p99']}") print(f" Notes: {target['notes']}") print() print("=" * 70) print() print("k6 Load Test - Scenarios:") print() k6_scenarios = [ { 'name': 'Smoke Test', 'vus': '1', 'duration': '30s', 'purpose': 'Verify basic functionality', 'thresholds': 'p99 < 200ms, 100% success' }, { 'name': 'Load Test', 'vus': '0→10→50', 'duration': '9m', 'purpose': 'Simulate realistic production load', 'thresholds': 'p95 < 500ms, error rate < 1%' }, { 'name': 'Stress Test', 'vus': '0→100→200', 'duration': '16m', 'purpose': 'Find system breaking point', 'thresholds': 'p99 < 2000ms, error rate < 5%' }, { 'name': 'Spike Test', 'vus': '10→200→10', 'duration': '2m', 'purpose': 'Test resilience to traffic spikes', 'thresholds': 'No crashes, recovery < 30s' } ] for scenario in k6_scenarios: print(f"Scenario: {scenario['name']}") print(f" Virtual Users: {scenario['vus']}") print(f" Duration: {scenario['duration']}") print(f" Purpose: {scenario['purpose']}") print(f" Success Criteria: {scenario['thresholds']}") print() print("=" * 70) print() print("k6 Implementation Details:") print() print(" Custom Metrics:") print(" - auth_success_rate: Authentication success rate") print(" - rest_gateway_latency: REST proxy latency distribution") print(" - graphql_gateway_latency: GraphQL latency distribution") print(" - soap_gateway_latency: SOAP latency distribution") print(" - error_count: Total errors across all requests") print() print(" Built-in Metrics:") print(" - http_req_duration: Request latency (p50/p95/p99)") print(" - http_req_failed: Failed request rate") print(" - http_reqs: Total requests per second") print(" - vus: Active virtual users") print() print(" Thresholds (fail test if exceeded):") print(" - http_req_duration: p50<100ms, p95<500ms, p99<1000ms") print(" - http_req_failed: rate<0.05 (error rate < 5%)") print(" - auth_success_rate: rate>0.95 (95% success)") print(" - error_count: count<100 (max 100 errors)") print() print("=" * 70) print() print("Locust Load Test - Features:") print() locust_features = [ { 'feature': 'User Classes', 'description': 'DoormanUser (realistic), StressTestUser (rapid-fire)', 'benefit': 'Different load patterns for different scenarios' }, { 'feature': 'Task Weighting', 'description': 'Tasks weighted by production traffic distribution', 'benefit': 'Realistic workload simulation' }, { 'feature': 'Load Shapes', 'description': 'Step, Spike, Wave patterns', 'benefit': 'Custom load patterns for specific tests' }, { 'feature': 'Tag-based Execution', 'description': 'Run specific test categories (auth, gateway, stress)', 'benefit': 'Targeted testing of specific components' }, { 'feature': 'Web UI', 'description': 'Real-time metrics dashboard', 'benefit': 'Visual monitoring during tests' }, { 'feature': 'HTML Reports', 'description': 'Comprehensive test result reports', 'benefit': 'Easy sharing and archival' } ] for feature in locust_features: print(f"{feature['feature']}:") print(f" Description: {feature['description']}") print(f" Benefit: {feature['benefit']}") print() print("=" * 70) print() print("Locust Traffic Mix (Realistic Workload):") print() print(" Task Distribution:") print(" - 10% Authentication (login)") print(" - 20% List APIs") print(" - 15% List Users") print(" - 15% List Roles") print(" - 15% List Groups") print(" - 25% REST Gateway (API proxying)") print(" - 5% Health Check") print() print(" Based on production access patterns:") print(" - Gateway requests are most common (API proxying)") print(" - API management second (admin operations)") print(" - Authentication periodic (token refresh)") print(" - Health checks for monitoring") print() print("=" * 70) print() print("Running Tests:") print() print(" k6 - Basic Run:") print(" k6 run load-tests/k6-load-test.js") print() print(" k6 - Custom Configuration:") print(" k6 run --env BASE_URL=https://api.example.com \\") print(" --env TEST_USERNAME=admin \\") print(" --env TEST_PASSWORD=secret \\") print(" load-tests/k6-load-test.js") print() print(" k6 - Generate JSON Results:") print(" k6 run --out json=results.json load-tests/k6-load-test.js") print() print(" Locust - Web UI Mode:") print(" locust -f load-tests/locust-load-test.py \\") print(" --host=http://localhost:8000") print(" # Open browser to http://localhost:8089") print() print(" Locust - Headless (CI/CD):") print(" locust -f load-tests/locust-load-test.py \\") print(" --host=http://localhost:8000 \\") print(" --users 50 --spawn-rate 5 --run-time 5m \\") print(" --headless --html report.html") print() print(" Locust - Specific Scenario:") print(" locust -f load-tests/locust-load-test.py \\") print(" --host=http://localhost:8000 \\") print(" --tags authentication") print() print("=" * 70) print() print("Load Shapes (Locust Custom Patterns):") print() print(" 1. StepLoadShape:") print(" - Gradually increase load in steps") print(" - 10 users added every 60 seconds") print(" - Total duration: 10 minutes") print(" - Use: locust --shape StepLoadShape") print() print(" 2. SpikeLoadShape:") print(" - Sudden traffic spike pattern") print(" - 0-60s: 10 users (normal)") print(" - 60-120s: 200 users (spike)") print(" - 120-180s: 10 users (recovery)") print(" - Use: locust --shape SpikeLoadShape") print() print(" 3. WaveLoadShape:") print(" - Sine wave load pattern") print(" - Baseline: 25 users") print(" - Amplitude: 50 users") print(" - Period: 2-minute waves") print(" - Use: locust --shape WaveLoadShape") print() print("=" * 70) print() print("CI/CD Integration:") print() print(" GitHub Actions Example:") print(" 1. Start Doorman (docker-compose up -d)") print(" 2. Run k6 load test") print(" 3. Check performance thresholds") print(" 4. Fail build if thresholds exceeded") print(" 5. Upload results as artifacts") print() print(" Performance Regression Detection:") print(" - Save baseline results (JSON)") print(" - Compare with new test results") print(" - Fail if regression detected:") print(" • Latency increase > 20%") print(" • Error rate increase > 2%") print(" • Throughput decrease > 15%") print() print(" Automated Testing Schedule:") print(" - Daily: Smoke tests (5 minutes)") print(" - Weekly: Load tests (30 minutes)") print(" - Monthly: Stress/spike tests (1 hour)") print(" - Quarterly: Baseline review and update") print() print("=" * 70) print() print("Monitoring During Tests:") print() print(" Application Metrics:") print(" - Request latency (p50, p95, p99)") print(" - Request rate (RPS)") print(" - Error rate by status code") print(" - Active connections") print(" - Worker CPU/memory usage") print() print(" Database Metrics:") print(" - Connection pool usage") print(" - Query latency") print(" - Slow queries (> 100ms)") print(" - Lock wait time") print(" - Replication lag") print() print(" Cache Metrics:") print(" - Hit rate (target > 80%)") print(" - Eviction rate") print(" - Memory usage") print(" - Connection count") print() print(" Commands:") print(" # Monitor system resources") print(" htop") print() print(" # Monitor MongoDB") print(" mongotop --host localhost --port 27017") print() print(" # Monitor Redis") print(" redis-cli --stat") print() print("=" * 70) print() print("Performance Optimization Tips:") print() print(" Database:") print(" ✓ Index frequently queried fields") print(" ✓ Increase connection pool size") print(" ✓ Use secondaryPreferred for reads") print() print(" Cache:") print(" ✓ Enable LRU eviction policy") print(" ✓ Increase max memory for Redis") print(" ✓ Use persistent connections") print() print(" Application:") print(" ✓ Workers = (2 × CPU cores) + 1") print(" ✓ Increase HTTP connection pool size") print(" ✓ Use asyncio.gather() for parallel ops") print() print(" Scaling:") print(" ✓ Horizontal: Add Doorman instances") print(" ✓ Vertical: Increase CPU/RAM") print(" ✓ Database: Replica set for reads") print() print("=" * 70) print() print("Alert Thresholds:") print() alerts = [ { 'metric': 'p99 Latency', 'warning': '> 1000ms', 'critical': '> 2000ms', 'action': 'Investigate slow queries' }, { 'metric': 'Error Rate', 'warning': '> 2%', 'critical': '> 5%', 'action': 'Check logs, scale up' }, { 'metric': 'CPU Usage', 'warning': '> 70%', 'critical': '> 85%', 'action': 'Add workers/instances' }, { 'metric': 'Memory Usage', 'warning': '> 75%', 'critical': '> 90%', 'action': 'Increase RAM' }, { 'metric': 'Cache Hit Rate', 'warning': '< 70%', 'critical': '< 50%', 'action': 'Review cache strategy' }, { 'metric': 'DB Connections', 'warning': '> 80% pool', 'critical': '> 95% pool', 'action': 'Increase pool size' } ] for alert in alerts: print(f"{alert['metric']}:") print(f" Warning: {alert['warning']}") print(f" Critical: {alert['critical']}") print(f" Action: {alert['action']}") print() print("=" * 70) print() print("Benefits:") print() print(" Performance Visibility:") print(" ✓ Know system capacity (max throughput)") print(" ✓ Understand latency under load") print(" ✓ Identify bottlenecks early") print(" ✓ Detect regressions before production") print() print(" Capacity Planning:") print(" ✓ Data-driven scaling decisions") print(" ✓ Predict resource needs") print(" ✓ Optimize infrastructure costs") print(" ✓ Plan for traffic growth") print() print(" SLA Guarantees:") print(" ✓ Set realistic performance targets") print(" ✓ Validate against baselines") print(" ✓ Prove compliance to customers") print(" ✓ Track improvement over time") print() print(" Risk Mitigation:") print(" ✓ Identify breaking points before production") print(" ✓ Verify resilience to traffic spikes") print(" ✓ Test graceful degradation") print(" ✓ Validate autoscaling behavior") print() print("=" * 70) print() print("Testing Best Practices:") print() print(" 1. Test realistic workloads:") print(" - Use production traffic distribution") print(" - Include authentication overhead") print(" - Mix read/write operations") print() print(" 2. Test incrementally:") print(" - Start with smoke test (verify basics)") print(" - Ramp up gradually (find saturation point)") print(" - Spike test (verify resilience)") print() print(" 3. Monitor holistically:") print(" - Application metrics (latency, errors)") print(" - Infrastructure metrics (CPU, memory)") print(" - Database metrics (connections, queries)") print() print(" 4. Document everything:") print(" - Test configuration") print(" - Results and observations") print(" - Issues identified") print(" - Optimization actions") print() print(" 5. Automate regression testing:") print(" - Run daily smoke tests") print(" - Compare with baselines") print(" - Alert on performance degradation") print() print("=" * 70) print() print("Future Enhancements:") print() print(" 1. Distributed load testing:") print(" - Run k6 across multiple machines") print(" - Coordinate with k6 Cloud or custom orchestration") print() print(" 2. Real user monitoring (RUM):") print(" - Capture actual user latency") print(" - Compare with synthetic tests") print() print(" 3. Chaos engineering:") print(" - Inject failures during load tests") print(" - Test resilience to database outages") print(" - Verify graceful degradation") print() print(" 4. Cost-based testing:") print(" - Track infrastructure cost during tests") print(" - Optimize cost per request") print() print("=" * 70) print() print("P2 Impact:") print(" No documented throughput/latency benchmarks") print() print("Production Impact:") print(" ✓ Established performance baselines (p50/p95/p99)") print(" ✓ Automated load testing with k6 and Locust") print(" ✓ Multiple test scenarios (smoke, load, stress, spike)") print(" ✓ CI/CD integration for regression detection") print(" ✓ Comprehensive monitoring guidance") print(" ✓ Data-driven capacity planning") print() if __name__ == '__main__': test_load_testing_implementation()