Files
formbricks-formbricks/.cursor/rules/cache-optimization.mdc
2025-09-12 11:16:13 +00:00

416 lines
13 KiB
Plaintext

---
description: Caching rules for performance improvements
globs:
alwaysApply: false
---
# Cache Optimization Patterns for Formbricks
## Cache Strategy Overview
Formbricks uses a **hybrid caching approach** optimized for enterprise scale:
- **Redis** for persistent cross-request caching
- **React `cache()`** for request-level deduplication
- **NO Next.js `unstable_cache()`** - avoid for reliability
## Key Files
### Core Cache Infrastructure
- [packages/cache/src/service.ts](mdc:packages/cache/src/service.ts) - Redis cache service
- [packages/cache/src/client.ts](mdc:packages/cache/src/client.ts) - Cache client initialization and singleton management
- [apps/web/lib/cache/index.ts](mdc:apps/web/lib/cache/index.ts) - Cache service proxy for web app
- [packages/cache/src/index.ts](mdc:packages/cache/src/index.ts) - Cache package exports and utilities
### Environment State Caching (Critical Endpoint)
- [apps/web/app/api/v1/client/[environmentId]/environment/route.ts](mdc:apps/web/app/api/v1/client/[environmentId]/environment/route.ts) - Main endpoint serving hundreds of thousands of SDK clients
- [apps/web/app/api/v1/client/[environmentId]/environment/lib/data.ts](mdc:apps/web/app/api/v1/client/[environmentId]/environment/lib/data.ts) - Optimized data layer with caching
## Enterprise-Grade Cache Key Patterns
**Always use** the `createCacheKey` utilities from the cache package:
```typescript
// ✅ Correct patterns
createCacheKey.environment.state(environmentId) // "fb:env:abc123:state"
createCacheKey.organization.billing(organizationId) // "fb:org:xyz789:billing"
createCacheKey.license.status(organizationId) // "fb:license:org123:status"
createCacheKey.user.permissions(userId, orgId) // "fb:user:456:org:123:permissions"
// ❌ Never use flat keys - collision-prone
"environment_abc123"
"user_data_456"
```
## When to Use Each Cache Type
### Use React `cache()` for Request Deduplication
```typescript
// ✅ Prevents multiple calls within same request
export const getEnterpriseLicense = reactCache(async () => {
// Complex license validation logic
});
```
### Use `cache.withCache()` for Simple Database Queries
```typescript
// ✅ Simple caching with automatic fallback (TTL in milliseconds)
export const getActionClasses = (environmentId: string) => {
return cache.withCache(() => fetchActionClassesFromDB(environmentId),
createCacheKey.environment.actionClasses(environmentId),
60 * 30 * 1000 // 30 minutes in milliseconds
);
};
```
### Use Explicit Redis Cache for Complex Business Logic
```typescript
// ✅ Full control for high-stakes endpoints
export const getEnvironmentState = async (environmentId: string) => {
const cached = await environmentStateCache.getEnvironmentState(environmentId);
if (cached) return cached;
const fresh = await buildComplexState(environmentId);
await environmentStateCache.setEnvironmentState(environmentId, fresh);
return fresh;
};
```
## Caching Decision Framework
### When TO Add Caching
```typescript
// ✅ Expensive operations that benefit from caching
- Database queries (>10ms typical)
- External API calls (>50ms typical)
- Complex computations (>5ms)
- File system operations
- Heavy data transformations
// Example: Database query with complex joins (TTL in milliseconds)
export const getEnvironmentWithDetails = withCache(
async (environmentId: string) => {
return prisma.environment.findUnique({
where: { id: environmentId },
include: { /* complex joins */ }
});
},
{ key: createCacheKey.environment.details(environmentId), ttl: 60 * 30 * 1000 } // 30 minutes
)();
```
### When NOT to Add Caching
```typescript
// ❌ Don't cache these operations - minimal overhead
- Simple property access (<0.1ms)
- Basic transformations (<1ms)
- Functions that just call already-cached functions
- Pure computation without I/O
// ❌ Bad example: Redundant caching
const getCachedLicenseFeatures = withCache(
async () => {
const license = await getEnterpriseLicense(); // Already cached!
return license.active ? license.features : null; // Just property access
},
{ key: "license-features", ttl: 1800 * 1000 } // 30 minutes in milliseconds
);
// ✅ Good example: Simple and efficient
const getLicenseFeatures = async () => {
const license = await getEnterpriseLicense(); // Already cached
return license.active ? license.features : null; // 0.1ms overhead
};
```
### Computational Overhead Analysis
Before adding caching, analyze the overhead:
```typescript
// ✅ High overhead - CACHE IT
- Database queries: ~10-100ms
- External APIs: ~50-500ms
- File I/O: ~5-50ms
- Complex algorithms: >5ms
// ❌ Low overhead - DON'T CACHE
- Property access: ~0.001ms
- Simple lookups: ~0.1ms
- Basic validation: ~1ms
- Type checks: ~0.01ms
// Example decision tree:
const expensiveOperation = async () => {
return prisma.query(); // 50ms - CACHE IT
};
const cheapOperation = (data: any) => {
return data.property; // 0.001ms - DON'T CACHE
};
```
### Avoid Cache Wrapper Anti-Pattern
```typescript
// ❌ Don't create wrapper functions just for caching
const getCachedUserPermissions = withCache(
async (userId: string) => getUserPermissions(userId),
{ key: createCacheKey.user.permissions(userId), ttl: 3600 * 1000 } // 1 hour in milliseconds
);
// ✅ Add caching directly to the original function
export const getUserPermissions = withCache(
async (userId: string) => {
return prisma.user.findUnique({
where: { id: userId },
include: { permissions: true }
});
},
{ key: createCacheKey.user.permissions(userId), ttl: 3600 * 1000 } // 1 hour in milliseconds
);
```
## TTL Coordination Strategy
### Multi-Layer Cache Coordination
For endpoints serving client SDKs, coordinate TTLs across layers:
```typescript
// Client SDK cache (expiresAt) - longest TTL for fewer requests
const CLIENT_TTL = 60 * 60; // 1 hour (seconds for client)
// Server Redis cache - shorter TTL ensures fresh data for clients
const SERVER_TTL = 60 * 30 * 1000; // 30 minutes in milliseconds
// HTTP cache headers (seconds)
const BROWSER_TTL = 60 * 60; // 1 hour (max-age)
const CDN_TTL = 60 * 30; // 30 minutes (s-maxage)
const CORS_TTL = 60 * 60; // 1 hour (balanced approach)
```
### Standard TTL Guidelines (in milliseconds for cache-manager + Keyv)
```typescript
// Configuration data - rarely changes
const CONFIG_TTL = 60 * 60 * 24 * 1000; // 24 hours
// User data - moderate frequency
const USER_TTL = 60 * 60 * 2 * 1000; // 2 hours
// Survey data - changes moderately
const SURVEY_TTL = 60 * 15 * 1000; // 15 minutes
// Billing data - expensive to compute
const BILLING_TTL = 60 * 30 * 1000; // 30 minutes
// Action classes - infrequent changes
const ACTION_CLASS_TTL = 60 * 30 * 1000; // 30 minutes
```
## High-Frequency Endpoint Optimization
### Performance Patterns for High-Volume Endpoints
```typescript
// ✅ Optimized high-frequency endpoint pattern
export const GET = async (request: NextRequest, props: { params: Promise<{ id: string }> }) => {
const params = await props.params;
try {
// Simple validation (avoid Zod for high-frequency)
if (!params.id || typeof params.id !== 'string') {
return responses.badRequestResponse("ID is required", undefined, true);
}
// Single optimized query with caching
const data = await getOptimizedData(params.id);
return responses.successResponse(
{
data,
expiresAt: new Date(Date.now() + CLIENT_TTL * 1000), // SDK cache duration
},
true,
"public, s-maxage=1800, max-age=3600, stale-while-revalidate=1800, stale-if-error=3600"
);
} catch (err) {
// Simplified error handling for performance
if (err instanceof ResourceNotFoundError) {
return responses.notFoundResponse(err.resourceType, err.resourceId);
}
logger.error({ error: err, url: request.url }, "Error in high-frequency endpoint");
return responses.internalServerErrorResponse(err.message, true);
}
};
```
### Avoid These Performance Anti-Patterns
```typescript
// ❌ Avoid for high-frequency endpoints
const inputValidation = ZodSchema.safeParse(input); // Too slow
const startTime = Date.now(); logger.debug(...); // Logging overhead
const { data, revalidateEnvironment } = await get(); // Complex return types
```
### CORS Optimization
```typescript
// ✅ Balanced CORS caching (not too aggressive)
export const OPTIONS = async (): Promise<Response> => {
return responses.successResponse(
{},
true,
"public, s-maxage=3600, max-age=3600" // 1 hour balanced approach
);
};
```
## Redis Cache Migration from Next.js
### Avoid Legacy Next.js Patterns
```typescript
// ❌ Old Next.js unstable_cache pattern (avoid)
const getCachedData = unstable_cache(
async (id) => fetchData(id),
['cache-key'],
{ tags: ['environment'], revalidate: 900 }
);
// ❌ Don't use revalidateEnvironment flags with Redis
return { data, revalidateEnvironment: true }; // This gets cached incorrectly!
// ✅ New Redis pattern with withCache (TTL in milliseconds)
export const getCachedData = (id: string) =>
withCache(
() => fetchData(id),
{
key: createCacheKey.environment.data(id),
ttl: 60 * 15 * 1000, // 15 minutes in milliseconds
}
)();
```
### Remove Revalidation Logic
When migrating from Next.js `unstable_cache`:
- Remove `revalidateEnvironment` or similar flags
- Remove tag-based invalidation logic
- Use TTL-based expiration instead
- Handle one-time updates (like `appSetupCompleted`) directly in cache
## Data Layer Optimization
### Single Query Pattern
```typescript
// ✅ Optimize with single database query
export const getOptimizedEnvironmentData = async (environmentId: string) => {
return prisma.environment.findUniqueOrThrow({
where: { id: environmentId },
include: {
project: {
select: { id: true, recontactDays: true, /* ... */ }
},
organization: {
select: { id: true, billing: true }
},
surveys: {
where: { status: "inProgress" },
select: { id: true, name: true, /* ... */ }
},
actionClasses: {
select: { id: true, name: true, /* ... */ }
}
}
});
};
// ❌ Avoid multiple separate queries
const environment = await getEnvironment(id);
const organization = await getOrganization(environment.organizationId);
const surveys = await getSurveys(id);
const actionClasses = await getActionClasses(id);
```
## Invalidation Best Practices
**Always use explicit key-based invalidation:**
```typescript
// ✅ Clear and debuggable
await invalidateCache(createCacheKey.environment.state(environmentId));
await invalidateCache([
createCacheKey.environment.surveys(environmentId),
createCacheKey.environment.actionClasses(environmentId)
]);
// ❌ Avoid complex tag systems
await invalidateByTags(["environment", "survey"]); // Don't do this
```
## Critical Performance Targets
### High-Frequency Endpoint Goals
- **Cache hit ratio**: >85%
- **Response time P95**: <200ms
- **Database load reduction**: >60%
- **HTTP cache duration**: 1hr browser, 30min Cloudflare
- **SDK refresh interval**: 1 hour with 30min server cache
### Performance Monitoring
- Use **existing elastic cache analytics** for metrics
- Log cache errors and warnings (not debug info)
- Track database query reduction
- Monitor response times for cached endpoints
- **Avoid performance logging** in high-frequency endpoints
## Error Handling Pattern
Always provide fallback to fresh data on cache errors:
```typescript
try {
const cached = await cache.get(key);
if (cached) return cached;
const fresh = await fetchFresh();
await cache.set(key, fresh, ttl); // ttl in milliseconds
return fresh;
} catch (error) {
// ✅ Always fallback to fresh data
logger.warn("Cache error, fetching fresh", { key, error });
return fetchFresh();
}
```
## Common Pitfalls to Avoid
1. **Never use Next.js `unstable_cache()`** - unreliable in production
2. **Don't use revalidation flags with Redis** - they get cached incorrectly
3. **Avoid Zod validation** for simple parameters in high-frequency endpoints
4. **Don't add performance logging** to high-frequency endpoints
5. **Coordinate TTLs** between client and server caches
6. **Don't over-engineer** with complex tag systems
7. **Avoid caching rapidly changing data** (real-time metrics)
8. **Always validate cache keys** to prevent collisions
9. **Don't add redundant caching layers** - analyze computational overhead first
10. **Avoid cache wrapper functions** - add caching directly to expensive operations
11. **Don't cache property access or simple transformations** - overhead is negligible
12. **Analyze the full call chain** before adding caching to avoid double-caching
13. **Remember TTL is in milliseconds** for cache-manager + Keyv stack (not seconds)
## Monitoring Strategy
- Use **existing elastic cache analytics** for metrics
- Log cache errors and warnings
- Track database query reduction
- Monitor response times for cached endpoints
- **Don't add custom metrics** that duplicate existing monitoring
## Important Notes
### TTL Units
- **cache-manager + Keyv**: TTL in **milliseconds**
- **Direct Redis commands**: TTL in **seconds** (EXPIRE, SETEX) or **milliseconds** (PEXPIRE, PSETEX)
- **HTTP cache headers**: TTL in **seconds** (max-age, s-maxage)
- **Client SDK**: TTL in **seconds** (expiresAt calculation)