fix: replace github.com/disintegration/imaging with github.com/kovidgoyal/imaging

This commit is contained in:
Thomas Müller
2024-04-26 11:29:22 +02:00
parent f7fb0bc591
commit a53a7cf8b5
26 changed files with 395 additions and 255 deletions

View File

@@ -1,12 +0,0 @@
language: go
go:
- "1.10.x"
- "1.11.x"
- "1.12.x"
before_install:
- go get github.com/mattn/goveralls
script:
- go test -v -race -cover
- $GOPATH/bin/goveralls -service=travis-ci

2
vendor/github.com/kovidgoyal/imaging/.gitignore generated vendored Normal file
View File

@@ -0,0 +1,2 @@
dist/

41
vendor/github.com/kovidgoyal/imaging/.goreleaser.yaml generated vendored Normal file
View File

@@ -0,0 +1,41 @@
# This is an example .goreleaser.yml file with some sensible defaults.
# Make sure to check the documentation at https://goreleaser.com
# The lines below are called `modelines`. See `:help modeline`
# Feel free to remove those if you don't want/need to use them.
# yaml-language-server: $schema=https://goreleaser.com/static/schema.json
# vim: set ts=2 sw=2 tw=0 fo=cnqoj
version: 1
before:
hooks:
# You may remove this if you don't use go modules.
- go mod tidy
# you may remove this if you don't need go generate
- go generate ./...
builds:
- skip: true
archives:
- format: tar.gz
# this name template makes the OS and Arch compatible with the results of `uname`.
name_template: >-
{{ .ProjectName }}_
{{- title .Os }}_
{{- if eq .Arch "amd64" }}x86_64
{{- else if eq .Arch "386" }}i386
{{- else }}{{ .Arch }}{{ end }}
{{- if .Arm }}v{{ .Arm }}{{ end }}
# use zip for windows archives
format_overrides:
- goos: windows
format: zip
changelog:
sort: asc
filters:
exclude:
- "^docs:"
- "^test:"

View File

@@ -1,226 +1,231 @@
# Imaging
[![GoDoc](https://godoc.org/github.com/disintegration/imaging?status.svg)](https://godoc.org/github.com/disintegration/imaging)
[![Build Status](https://travis-ci.org/disintegration/imaging.svg?branch=master)](https://travis-ci.org/disintegration/imaging)
[![Coverage Status](https://coveralls.io/repos/github/disintegration/imaging/badge.svg?branch=master&service=github)](https://coveralls.io/github/disintegration/imaging?branch=master)
[![Go Report Card](https://goreportcard.com/badge/github.com/disintegration/imaging)](https://goreportcard.com/report/github.com/disintegration/imaging)
Package imaging provides basic image processing functions (resize, rotate, crop, brightness/contrast adjustments, etc.).
All the image processing functions provided by the package accept any image type that implements `image.Image` interface
as an input, and return a new image of `*image.NRGBA` type (32bit RGBA colors, non-premultiplied alpha).
## Installation
go get -u github.com/disintegration/imaging
## Documentation
http://godoc.org/github.com/disintegration/imaging
## Usage examples
A few usage examples can be found below. See the documentation for the full list of supported functions.
### Image resizing
```go
// Resize srcImage to size = 128x128px using the Lanczos filter.
dstImage128 := imaging.Resize(srcImage, 128, 128, imaging.Lanczos)
// Resize srcImage to width = 800px preserving the aspect ratio.
dstImage800 := imaging.Resize(srcImage, 800, 0, imaging.Lanczos)
// Scale down srcImage to fit the 800x600px bounding box.
dstImageFit := imaging.Fit(srcImage, 800, 600, imaging.Lanczos)
// Resize and crop the srcImage to fill the 100x100px area.
dstImageFill := imaging.Fill(srcImage, 100, 100, imaging.Center, imaging.Lanczos)
```
Imaging supports image resizing using various resampling filters. The most notable ones:
- `Lanczos` - A high-quality resampling filter for photographic images yielding sharp results.
- `CatmullRom` - A sharp cubic filter that is faster than Lanczos filter while providing similar results.
- `MitchellNetravali` - A cubic filter that produces smoother results with less ringing artifacts than CatmullRom.
- `Linear` - Bilinear resampling filter, produces smooth output. Faster than cubic filters.
- `Box` - Simple and fast averaging filter appropriate for downscaling. When upscaling it's similar to NearestNeighbor.
- `NearestNeighbor` - Fastest resampling filter, no antialiasing.
The full list of supported filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali, CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine. Custom filters can be created using ResampleFilter struct.
**Resampling filters comparison**
Original image:
![srcImage](testdata/branches.png)
The same image resized from 600x400px to 150x100px using different resampling filters.
From faster (lower quality) to slower (higher quality):
Filter | Resize result
--------------------------|---------------------------------------------
`imaging.NearestNeighbor` | ![dstImage](testdata/out_resize_nearest.png)
`imaging.Linear` | ![dstImage](testdata/out_resize_linear.png)
`imaging.CatmullRom` | ![dstImage](testdata/out_resize_catrom.png)
`imaging.Lanczos` | ![dstImage](testdata/out_resize_lanczos.png)
### Gaussian Blur
```go
dstImage := imaging.Blur(srcImage, 0.5)
```
Sigma parameter allows to control the strength of the blurring effect.
Original image | Sigma = 0.5 | Sigma = 1.5
-----------------------------------|----------------------------------------|---------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_blur_0.5.png) | ![dstImage](testdata/out_blur_1.5.png)
### Sharpening
```go
dstImage := imaging.Sharpen(srcImage, 0.5)
```
`Sharpen` uses gaussian function internally. Sigma parameter allows to control the strength of the sharpening effect.
Original image | Sigma = 0.5 | Sigma = 1.5
-----------------------------------|-------------------------------------------|------------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_sharpen_0.5.png) | ![dstImage](testdata/out_sharpen_1.5.png)
### Gamma correction
```go
dstImage := imaging.AdjustGamma(srcImage, 0.75)
```
Original image | Gamma = 0.75 | Gamma = 1.25
-----------------------------------|------------------------------------------|-----------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_gamma_0.75.png) | ![dstImage](testdata/out_gamma_1.25.png)
### Contrast adjustment
```go
dstImage := imaging.AdjustContrast(srcImage, 20)
```
Original image | Contrast = 15 | Contrast = -15
-----------------------------------|--------------------------------------------|-------------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_contrast_p15.png) | ![dstImage](testdata/out_contrast_m15.png)
### Brightness adjustment
```go
dstImage := imaging.AdjustBrightness(srcImage, 20)
```
Original image | Brightness = 10 | Brightness = -10
-----------------------------------|----------------------------------------------|---------------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_brightness_p10.png) | ![dstImage](testdata/out_brightness_m10.png)
### Saturation adjustment
```go
dstImage := imaging.AdjustSaturation(srcImage, 20)
```
Original image | Saturation = 30 | Saturation = -30
-----------------------------------|----------------------------------------------|---------------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_saturation_p30.png) | ![dstImage](testdata/out_saturation_m30.png)
## FAQ
### Incorrect image orientation after processing (e.g. an image appears rotated after resizing)
Most probably, the given image contains the EXIF orientation tag.
The stadard `image/*` packages do not support loading and saving
this kind of information. To fix the issue, try opening images with
the `AutoOrientation` decode option. If this option is set to `true`,
the image orientation is changed after decoding, according to the
orientation tag (if present). Here's the example:
```go
img, err := imaging.Open("test.jpg", imaging.AutoOrientation(true))
```
### What's the difference between `imaging` and `gift` packages?
[imaging](https://github.com/disintegration/imaging)
is designed to be a lightweight and simple image manipulation package.
It provides basic image processing functions and a few helper functions
such as `Open` and `Save`. It consistently returns *image.NRGBA image
type (8 bits per channel, RGBA).
[gift](https://github.com/disintegration/gift)
supports more advanced image processing, for example, sRGB/Linear color
space conversions. It also supports different output image types
(e.g. 16 bits per channel) and provides easy-to-use API for chaining
multiple processing steps together.
## Example code
```go
package main
import (
"image"
"image/color"
"log"
"github.com/disintegration/imaging"
)
func main() {
// Open a test image.
src, err := imaging.Open("testdata/flowers.png")
if err != nil {
log.Fatalf("failed to open image: %v", err)
}
// Crop the original image to 300x300px size using the center anchor.
src = imaging.CropAnchor(src, 300, 300, imaging.Center)
// Resize the cropped image to width = 200px preserving the aspect ratio.
src = imaging.Resize(src, 200, 0, imaging.Lanczos)
// Create a blurred version of the image.
img1 := imaging.Blur(src, 5)
// Create a grayscale version of the image with higher contrast and sharpness.
img2 := imaging.Grayscale(src)
img2 = imaging.AdjustContrast(img2, 20)
img2 = imaging.Sharpen(img2, 2)
// Create an inverted version of the image.
img3 := imaging.Invert(src)
// Create an embossed version of the image using a convolution filter.
img4 := imaging.Convolve3x3(
src,
[9]float64{
-1, -1, 0,
-1, 1, 1,
0, 1, 1,
},
nil,
)
// Create a new image and paste the four produced images into it.
dst := imaging.New(400, 400, color.NRGBA{0, 0, 0, 0})
dst = imaging.Paste(dst, img1, image.Pt(0, 0))
dst = imaging.Paste(dst, img2, image.Pt(0, 200))
dst = imaging.Paste(dst, img3, image.Pt(200, 0))
dst = imaging.Paste(dst, img4, image.Pt(200, 200))
// Save the resulting image as JPEG.
err = imaging.Save(dst, "testdata/out_example.jpg")
if err != nil {
log.Fatalf("failed to save image: %v", err)
}
}
```
Output:
![dstImage](testdata/out_example.jpg)
# Imaging
Package imaging provides basic image processing functions (resize, rotate, crop, brightness/contrast adjustments, etc.).
All the image processing functions provided by the package accept any image type that implements `image.Image` interface
as an input, and return a new image of `*image.NRGBA` type (32bit RGBA colors, non-premultiplied alpha).
## Installation
go get -u github.com/kovidgoyal/imaging
## Documentation
https://pkg.go.dev/github.com/kovidgoyal/imaging
## Usage examples
A few usage examples can be found below. See the documentation for the full list of supported functions.
### Image resizing
```go
// Resize srcImage to size = 128x128px using the Lanczos filter.
dstImage128 := imaging.Resize(srcImage, 128, 128, imaging.Lanczos)
// Resize srcImage to width = 800px preserving the aspect ratio.
dstImage800 := imaging.Resize(srcImage, 800, 0, imaging.Lanczos)
// Scale down srcImage to fit the 800x600px bounding box.
dstImageFit := imaging.Fit(srcImage, 800, 600, imaging.Lanczos)
// Resize and crop the srcImage to fill the 100x100px area.
dstImageFill := imaging.Fill(srcImage, 100, 100, imaging.Center, imaging.Lanczos)
```
Imaging supports image resizing using various resampling filters. The most notable ones:
- `Lanczos` - A high-quality resampling filter for photographic images yielding sharp results.
- `CatmullRom` - A sharp cubic filter that is faster than Lanczos filter while providing similar results.
- `MitchellNetravali` - A cubic filter that produces smoother results with less ringing artifacts than CatmullRom.
- `Linear` - Bilinear resampling filter, produces smooth output. Faster than cubic filters.
- `Box` - Simple and fast averaging filter appropriate for downscaling. When upscaling it's similar to NearestNeighbor.
- `NearestNeighbor` - Fastest resampling filter, no antialiasing.
The full list of supported filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali, CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine. Custom filters can be created using ResampleFilter struct.
**Resampling filters comparison**
Original image:
![srcImage](testdata/branches.png)
The same image resized from 600x400px to 150x100px using different resampling filters.
From faster (lower quality) to slower (higher quality):
Filter | Resize result
--------------------------|---------------------------------------------
`imaging.NearestNeighbor` | ![dstImage](testdata/out_resize_nearest.png)
`imaging.Linear` | ![dstImage](testdata/out_resize_linear.png)
`imaging.CatmullRom` | ![dstImage](testdata/out_resize_catrom.png)
`imaging.Lanczos` | ![dstImage](testdata/out_resize_lanczos.png)
### Gaussian Blur
```go
dstImage := imaging.Blur(srcImage, 0.5)
```
Sigma parameter allows to control the strength of the blurring effect.
Original image | Sigma = 0.5 | Sigma = 1.5
-----------------------------------|----------------------------------------|---------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_blur_0.5.png) | ![dstImage](testdata/out_blur_1.5.png)
### Sharpening
```go
dstImage := imaging.Sharpen(srcImage, 0.5)
```
`Sharpen` uses gaussian function internally. Sigma parameter allows to control the strength of the sharpening effect.
Original image | Sigma = 0.5 | Sigma = 1.5
-----------------------------------|-------------------------------------------|------------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_sharpen_0.5.png) | ![dstImage](testdata/out_sharpen_1.5.png)
### Gamma correction
```go
dstImage := imaging.AdjustGamma(srcImage, 0.75)
```
Original image | Gamma = 0.75 | Gamma = 1.25
-----------------------------------|------------------------------------------|-----------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_gamma_0.75.png) | ![dstImage](testdata/out_gamma_1.25.png)
### Contrast adjustment
```go
dstImage := imaging.AdjustContrast(srcImage, 20)
```
Original image | Contrast = 15 | Contrast = -15
-----------------------------------|--------------------------------------------|-------------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_contrast_p15.png) | ![dstImage](testdata/out_contrast_m15.png)
### Brightness adjustment
```go
dstImage := imaging.AdjustBrightness(srcImage, 20)
```
Original image | Brightness = 10 | Brightness = -10
-----------------------------------|----------------------------------------------|---------------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_brightness_p10.png) | ![dstImage](testdata/out_brightness_m10.png)
### Saturation adjustment
```go
dstImage := imaging.AdjustSaturation(srcImage, 20)
```
Original image | Saturation = 30 | Saturation = -30
-----------------------------------|----------------------------------------------|---------------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_saturation_p30.png) | ![dstImage](testdata/out_saturation_m30.png)
### Hue adjustment
```go
dstImage := imaging.AdjustHue(srcImage, 20)
```
Original image | Hue = 60 | Hue = -60
-----------------------------------|----------------------------------------------|---------------------------------------------
![srcImage](testdata/flowers_small.png) | ![dstImage](testdata/out_hue_p60.png) | ![dstImage](testdata/out_hue_m60.png)
## FAQ
### Incorrect image orientation after processing (e.g. an image appears rotated after resizing)
Most probably, the given image contains the EXIF orientation tag.
The standard `image/*` packages do not support loading and saving
this kind of information. To fix the issue, try opening images with
the `AutoOrientation` decode option. If this option is set to `true`,
the image orientation is changed after decoding, according to the
orientation tag (if present). Here's the example:
```go
img, err := imaging.Open("test.jpg", imaging.AutoOrientation(true))
```
### What's the difference between `imaging` and `gift` packages?
[imaging](https://github.com/kovidgoyal/imaging)
is designed to be a lightweight and simple image manipulation package.
It provides basic image processing functions and a few helper functions
such as `Open` and `Save`. It consistently returns *image.NRGBA image
type (8 bits per channel, RGBA).
[gift](https://github.com/disintegration/gift)
supports more advanced image processing, for example, sRGB/Linear color
space conversions. It also supports different output image types
(e.g. 16 bits per channel) and provides easy-to-use API for chaining
multiple processing steps together.
## Example code
```go
package main
import (
"image"
"image/color"
"log"
"github.com/kovidgoyal/imaging"
)
func main() {
// Open a test image.
src, err := imaging.Open("testdata/flowers.png")
if err != nil {
log.Fatalf("failed to open image: %v", err)
}
// Crop the original image to 300x300px size using the center anchor.
src = imaging.CropAnchor(src, 300, 300, imaging.Center)
// Resize the cropped image to width = 200px preserving the aspect ratio.
src = imaging.Resize(src, 200, 0, imaging.Lanczos)
// Create a blurred version of the image.
img1 := imaging.Blur(src, 5)
// Create a grayscale version of the image with higher contrast and sharpness.
img2 := imaging.Grayscale(src)
img2 = imaging.AdjustContrast(img2, 20)
img2 = imaging.Sharpen(img2, 2)
// Create an inverted version of the image.
img3 := imaging.Invert(src)
// Create an embossed version of the image using a convolution filter.
img4 := imaging.Convolve3x3(
src,
[9]float64{
-1, -1, 0,
-1, 1, 1,
0, 1, 1,
},
nil,
)
// Create a new image and paste the four produced images into it.
dst := imaging.New(400, 400, color.NRGBA{0, 0, 0, 0})
dst = imaging.Paste(dst, img1, image.Pt(0, 0))
dst = imaging.Paste(dst, img2, image.Pt(0, 200))
dst = imaging.Paste(dst, img3, image.Pt(200, 0))
dst = imaging.Paste(dst, img4, image.Pt(200, 200))
// Save the resulting image as JPEG.
err = imaging.Save(dst, "testdata/out_example.jpg")
if err != nil {
log.Fatalf("failed to save image: %v", err)
}
}
```
Output:
![dstImage](testdata/out_example.jpg)

View File

@@ -62,6 +62,10 @@ func Invert(img image.Image) *image.NRGBA {
// dstImage = imaging.AdjustSaturation(srcImage, -10) // Decrease image saturation by 10%.
//
func AdjustSaturation(img image.Image, percentage float64) *image.NRGBA {
if percentage == 0 {
return Clone(img)
}
percentage = math.Min(math.Max(percentage, -100), 100)
multiplier := 1 + percentage/100
@@ -76,6 +80,34 @@ func AdjustSaturation(img image.Image, percentage float64) *image.NRGBA {
})
}
// AdjustHue changes the hue of the image using the shift parameter (measured in degrees) and returns the adjusted image.
// The shift = 0 (or 360 / -360 / etc.) gives the original image.
// The shift = 180 (or -180) corresponds to a 180° degree rotation of the color wheel and thus gives the image with its hue inverted for each pixel.
//
// Examples:
// dstImage = imaging.AdjustHue(srcImage, 90) // Shift Hue by 90°.
// dstImage = imaging.AdjustHue(srcImage, -30) // Shift Hue by -30°.
//
func AdjustHue(img image.Image, shift float64) *image.NRGBA {
if math.Mod(shift, 360) == 0 {
return Clone(img)
}
summand := shift / 360
return AdjustFunc(img, func(c color.NRGBA) color.NRGBA {
h, s, l := rgbToHSL(c.R, c.G, c.B)
h += summand
h = math.Mod(h, 1)
//Adding 1 because Golang's Modulo function behaves differently to similar operators in most other languages.
if h < 0 {
h++
}
r, g, b := hslToRGB(h, s, l)
return color.NRGBA{r, g, b, c.A}
})
}
// AdjustContrast changes the contrast of the image using the percentage parameter and returns the adjusted image.
// The percentage must be in range (-100, 100). The percentage = 0 gives the original image.
// The percentage = -100 gives solid gray image.
@@ -86,6 +118,10 @@ func AdjustSaturation(img image.Image, percentage float64) *image.NRGBA {
// dstImage = imaging.AdjustContrast(srcImage, 20) // Increase image contrast by 20%.
//
func AdjustContrast(img image.Image, percentage float64) *image.NRGBA {
if percentage == 0 {
return Clone(img)
}
percentage = math.Min(math.Max(percentage, -100.0), 100.0)
lut := make([]uint8, 256)
@@ -114,6 +150,10 @@ func AdjustContrast(img image.Image, percentage float64) *image.NRGBA {
// dstImage = imaging.AdjustBrightness(srcImage, 10) // Increase image brightness by 10%.
//
func AdjustBrightness(img image.Image, percentage float64) *image.NRGBA {
if percentage == 0 {
return Clone(img)
}
percentage = math.Min(math.Max(percentage, -100.0), 100.0)
lut := make([]uint8, 256)
@@ -134,6 +174,10 @@ func AdjustBrightness(img image.Image, percentage float64) *image.NRGBA {
// dstImage = imaging.AdjustGamma(srcImage, 0.7)
//
func AdjustGamma(img image.Image, gamma float64) *image.NRGBA {
if gamma == 1 {
return Clone(img)
}
e := 1.0 / math.Max(gamma, 0.0001)
lut := make([]uint8, 256)

29
vendor/github.com/kovidgoyal/imaging/publish.py generated vendored Normal file
View File

@@ -0,0 +1,29 @@
#!/usr/bin/env python
# License: GPLv3 Copyright: 2024, Kovid Goyal <kovid at kovidgoyal.net>
import os
import subprocess
def run(*args: str):
cp = subprocess.run(args)
if cp.returncode != 0:
raise SystemExit(cp.returncode)
def main():
version = input('Enter the version to publish: ')
try:
ans = input(f'Publish version \033[91m{version}\033[m (y/n): ')
except KeyboardInterrupt:
ans = 'n'
if ans.lower() != 'y':
return
os.environ['GITHUB_TOKEN'] = open(os.path.join(os.environ['PENV'], 'github-token')).read().strip()
run('git', 'tag', '-a', 'v' + version, '-m', f'version {version}')
run('git', 'push')
run('goreleaser', 'release')
if __name__ == '__main__':
main()

View File

@@ -87,6 +87,10 @@ func Resize(img image.Image, width, height int, filter ResampleFilter) *image.NR
dstH = int(math.Max(1.0, math.Floor(tmpH+0.5)))
}
if srcW == dstW && srcH == dstH {
return Clone(img)
}
if filter.Support <= 0 {
// Nearest-neighbor special case.
return resizeNearest(img, dstW, dstH)
@@ -98,10 +102,8 @@ func Resize(img image.Image, width, height int, filter ResampleFilter) *image.NR
if srcW != dstW {
return resizeHorizontal(img, dstW, filter)
}
if srcH != dstH {
return resizeVertical(img, dstH, filter)
}
return Clone(img)
return resizeVertical(img, dstH, filter)
}
func resizeHorizontal(img image.Image, width int, filter ResampleFilter) *image.NRGBA {

View File

@@ -18,7 +18,7 @@ func newScanner(img image.Image) *scanner {
h: img.Bounds().Dy(),
}
if img, ok := img.(*image.Paletted); ok {
s.palette = make([]color.NRGBA, len(img.Palette))
s.palette = make([]color.NRGBA, max(256, len(img.Palette)))
for i := 0; i < len(img.Palette); i++ {
s.palette[i] = color.NRGBAModel.Convert(img.Palette[i]).(color.NRGBA)
}

2
vendor/github.com/kovidgoyal/imaging/session.vim generated vendored Normal file
View File

@@ -0,0 +1,2 @@
" Empty for the moment

View File

@@ -96,6 +96,10 @@ func Crop(img image.Image, rect image.Rectangle) *image.NRGBA {
if r.Empty() {
return &image.NRGBA{}
}
if r.Eq(img.Bounds().Sub(img.Bounds().Min)) {
return Clone(img)
}
src := newScanner(img)
dst := image.NewNRGBA(image.Rect(0, 0, r.Dx(), r.Dy()))
rowSize := r.Dx() * 4
@@ -133,6 +137,10 @@ func Paste(background, img image.Image, pos image.Point) *image.NRGBA {
if interRect.Empty() {
return dst
}
if interRect.Eq(dst.Bounds()) {
return Clone(img)
}
src := newScanner(img)
parallel(interRect.Min.Y, interRect.Max.Y, func(ys <-chan int) {
for y := range ys {

View File

@@ -5,8 +5,17 @@ import (
"math"
"runtime"
"sync"
"sync/atomic"
)
var maxProcs int64
// SetMaxProcs limits the number of concurrent processing goroutines to the given value.
// A value <= 0 clears the limit.
func SetMaxProcs(value int) {
atomic.StoreInt64(&maxProcs, int64(value))
}
// parallel processes the data in separate goroutines.
func parallel(start, stop int, fn func(<-chan int)) {
count := stop - start
@@ -15,6 +24,10 @@ func parallel(start, stop int, fn func(<-chan int)) {
}
procs := runtime.GOMAXPROCS(0)
limit := int(atomic.LoadInt64(&maxProcs))
if procs > limit && limit > 0 {
procs = limit
}
if procs > count {
procs = count
}