Files
readur/tests/webdav_stress_tests.rs
2025-12-15 16:48:27 -08:00

1879 lines
69 KiB
Rust

/*
* WebDAV Stress Testing Suite
*
* Comprehensive stress tests for WebDAV sync functionality with infinite loop detection.
* These tests create complex directory structures and monitor for problematic behavior
* patterns that could indicate infinite loops or performance issues.
*/
use anyhow::{anyhow, Result};
use serde::{Deserialize, Serialize};
use std::collections::{HashMap, HashSet, VecDeque};
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use std::sync::{Arc, Once};
use std::time::{Duration, Instant};
use tokio::sync::{Mutex, RwLock, Semaphore};
use tokio::time::{sleep, timeout, interval};
use tokio::net::TcpListener;
use tracing::{debug, error, info, warn};
// dav-server imports for realistic WebDAV testing
use dav_server::{fakels::FakeLs, memfs::MemFs, DavHandler};
use http_body_util::{BodyExt, Full};
use hyper::server::conn::http1;
use hyper::service::service_fn;
use hyper_util::rt::TokioIo;
#[cfg(feature = "stress-testing")]
use readur::services::webdav::{WebDAVService, WebDAVConfig};
// Global tracing initialization - ensures it only happens once
static INIT_TRACING: Once = Once::new();
/// Initialize tracing subscriber safely - can be called multiple times
fn init_tracing() {
INIT_TRACING.call_once(|| {
tracing_subscriber::fmt::init();
});
}
/// Realistic WebDAV server for testing using dav-server with in-memory filesystem
struct MockWebDAVServer {
port: u16,
server_handle: Option<tokio::task::JoinHandle<()>>,
shutdown_signal: Option<tokio::sync::oneshot::Sender<()>>,
}
impl MockWebDAVServer {
async fn start() -> Result<Self> {
// Create in-memory filesystem with realistic test structure
let memfs = MemFs::new();
// Create the test directory structure that matches the test paths
Self::create_test_structure(&memfs).await?;
// Build the WebDAV handler
let dav_handler = DavHandler::builder()
.filesystem(memfs)
.locksystem(FakeLs::new())
.build_handler();
let listener = TcpListener::bind("127.0.0.1:0").await
.map_err(|e| anyhow!("Failed to bind to port: {}", e))?;
let port = listener.local_addr()
.map_err(|e| anyhow!("Failed to get local address: {}", e))?
.port();
let (shutdown_tx, mut shutdown_rx) = tokio::sync::oneshot::channel::<()>();
let server_handle = tokio::spawn(async move {
loop {
tokio::select! {
result = listener.accept() => {
match result {
Ok((stream, _addr)) => {
let io = TokioIo::new(stream);
let handler = dav_handler.clone();
tokio::spawn(async move {
let service = service_fn(move |req| {
let handler = handler.clone();
async move {
let response = handler.handle(req).await;
// Convert DavResponse to hyper Response
let (parts, body) = response.into_parts();
let body_bytes = body.collect().await
.map(|c| c.to_bytes())
.unwrap_or_default();
Ok::<_, std::convert::Infallible>(
hyper::Response::from_parts(parts, Full::new(body_bytes))
)
}
});
if let Err(e) = http1::Builder::new()
.serve_connection(io, service)
.await
{
debug!("WebDAV connection error: {}", e);
}
});
}
Err(e) => {
error!("Failed to accept connection: {}", e);
}
}
}
_ = &mut shutdown_rx => {
info!("WebDAV server shutting down");
break;
}
}
}
});
// Give the server a moment to start
sleep(Duration::from_millis(100)).await;
info!("Realistic WebDAV server (dav-server) started on port {}", port);
Ok(Self {
port,
server_handle: Some(server_handle),
shutdown_signal: Some(shutdown_tx),
})
}
/// Create a realistic test directory structure in the in-memory filesystem
async fn create_test_structure(memfs: &MemFs) -> Result<()> {
use dav_server::davpath::DavPath;
use dav_server::fs::{DavFile, DavFileSystem, OpenOptions};
use bytes::Bytes;
// Define the directory structure matching our test paths
let directories = vec![
"/main-structure",
"/main-structure/documents",
"/main-structure/images",
"/main-structure/archives",
"/loop-traps",
"/loop-traps/deep-nesting",
"/loop-traps/deep-nesting/level1",
"/loop-traps/deep-nesting/level1/level2",
"/loop-traps/deep-nesting/level1/level2/level3",
"/symlink-test",
"/symlink-test/folder1",
"/symlink-test/folder2",
"/test-repo-1",
"/test-repo-1/src",
"/test-repo-1/docs",
"/large-directory",
"/unicode-test",
"/unicode-test/subfolder1",
"/unicode-test/subfolder2",
];
// Create directories
for dir_path in &directories {
let path = DavPath::new(dir_path)
.map_err(|e| anyhow!("Invalid path {}: {:?}", dir_path, e))?;
if let Err(e) = memfs.create_dir(&path).await {
debug!("Directory {} may already exist: {:?}", dir_path, e);
}
}
// Helper to create a file with content
async fn create_file(memfs: &MemFs, file_path: &str, content: &str) -> Result<()> {
let path = DavPath::new(file_path)
.map_err(|e| anyhow!("Invalid path {}: {:?}", file_path, e))?;
let options = OpenOptions {
read: false,
write: true,
append: false,
truncate: true,
create: true,
create_new: false,
size: Some(content.len() as u64),
checksum: None,
};
let mut file = memfs.open(&path, options).await
.map_err(|e| anyhow!("Failed to create file {}: {:?}", file_path, e))?;
file.write_bytes(Bytes::from(content.to_string())).await
.map_err(|e| anyhow!("Failed to write to file {}: {:?}", file_path, e))?;
Ok(())
}
// Create some test files in various directories
let files = vec![
("/main-structure/readme.txt", "Main structure readme content"),
("/main-structure/documents/report.pdf", "Fake PDF content for testing"),
("/main-structure/documents/notes.txt", "Some notes here"),
("/main-structure/images/photo.jpg", "Fake JPEG data"),
("/loop-traps/trap-file.txt", "Loop trap test file"),
("/loop-traps/deep-nesting/nested-file.txt", "Deeply nested file"),
("/loop-traps/deep-nesting/level1/level2/level3/bottom.txt", "Bottom of nesting"),
("/symlink-test/test.txt", "Symlink test file"),
("/symlink-test/folder1/file1.txt", "File in folder1"),
("/symlink-test/folder2/file2.txt", "File in folder2"),
("/test-repo-1/README.md", "# Test Repository\n\nThis is a test."),
("/test-repo-1/src/main.rs", "fn main() { println!(\"Hello\"); }"),
("/test-repo-1/docs/guide.md", "# User Guide"),
("/unicode-test/subfolder1/test1.txt", "Unicode test content 1"),
("/unicode-test/subfolder2/test2.txt", "Unicode test content 2"),
];
let num_files = files.len();
// Add many files to large-directory for stress testing
for i in 0..50 {
let path_str = format!("/large-directory/file_{:04}.txt", i);
let content = format!("Content of file {}", i);
if let Err(e) = create_file(memfs, &path_str, &content).await {
debug!("Failed to create file {}: {:?}", path_str, e);
}
}
// Create the regular test files
for (file_path, content) in files {
if let Err(e) = create_file(memfs, file_path, content).await {
debug!("Failed to create file {}: {:?}", file_path, e);
}
}
info!("Created test directory structure with {} directories and {} files",
directories.len(), num_files + 50);
Ok(())
}
fn url(&self) -> String {
format!("http://127.0.0.1:{}", self.port)
}
async fn stop(&mut self) {
// Send shutdown signal
if let Some(tx) = self.shutdown_signal.take() {
let _ = tx.send(());
}
// Wait for server to stop
if let Some(handle) = self.server_handle.take() {
handle.abort();
let _ = handle.await;
}
}
}
impl Drop for MockWebDAVServer {
fn drop(&mut self) {
if let Some(tx) = self.shutdown_signal.take() {
let _ = tx.send(());
}
if let Some(handle) = self.server_handle.take() {
handle.abort();
}
}
}
/// Circuit breaker for protecting against infinite loops and cascading failures
#[derive(Debug)]
pub struct CircuitBreaker {
failure_count: Arc<AtomicUsize>,
success_count: Arc<AtomicUsize>,
last_failure_time: Arc<Mutex<Option<Instant>>>,
state: Arc<RwLock<CircuitBreakerState>>,
config: CircuitBreakerConfig,
}
#[derive(Debug, Clone, PartialEq)]
enum CircuitBreakerState {
Closed, // Normal operation
Open, // Failing fast
HalfOpen, // Testing if service recovered
}
#[derive(Debug, Clone)]
struct CircuitBreakerConfig {
failure_threshold: usize,
timeout_duration: Duration,
success_threshold: usize,
}
impl CircuitBreaker {
pub fn new(failure_threshold: usize, timeout_duration: Duration) -> Self {
Self {
failure_count: Arc::new(AtomicUsize::new(0)),
success_count: Arc::new(AtomicUsize::new(0)),
last_failure_time: Arc::new(Mutex::new(None)),
state: Arc::new(RwLock::new(CircuitBreakerState::Closed)),
config: CircuitBreakerConfig {
failure_threshold,
timeout_duration,
success_threshold: 2, // Need 2 successes to close circuit
},
}
}
pub async fn call<F, T, E>(&self, operation: F) -> Result<T, CircuitBreakerError<E>>
where
F: std::future::Future<Output = Result<T, E>>,
{
// Check if circuit should be opened
{
let state = self.state.read().await;
match *state {
CircuitBreakerState::Open => {
let last_failure = self.last_failure_time.lock().await;
if let Some(failure_time) = *last_failure {
if failure_time.elapsed() < self.config.timeout_duration {
return Err(CircuitBreakerError::CircuitOpen);
}
}
// Timeout expired, try half-open
drop(last_failure);
drop(state);
*self.state.write().await = CircuitBreakerState::HalfOpen;
}
CircuitBreakerState::HalfOpen => {
// Only allow limited requests in half-open state
if self.success_count.load(Ordering::Relaxed) >= self.config.success_threshold {
return Err(CircuitBreakerError::CircuitOpen);
}
}
CircuitBreakerState::Closed => {}
}
}
// Execute the operation
match operation.await {
Ok(result) => {
self.on_success().await;
Ok(result)
}
Err(e) => {
self.on_failure().await;
Err(CircuitBreakerError::OperationFailed(e))
}
}
}
async fn on_success(&self) {
let state = self.state.read().await;
match *state {
CircuitBreakerState::HalfOpen => {
let success_count = self.success_count.fetch_add(1, Ordering::Relaxed) + 1;
if success_count >= self.config.success_threshold {
drop(state);
*self.state.write().await = CircuitBreakerState::Closed;
self.failure_count.store(0, Ordering::Relaxed);
self.success_count.store(0, Ordering::Relaxed);
}
}
CircuitBreakerState::Closed => {
self.failure_count.store(0, Ordering::Relaxed);
}
_ => {}
}
}
async fn on_failure(&self) {
let failure_count = self.failure_count.fetch_add(1, Ordering::Relaxed) + 1;
*self.last_failure_time.lock().await = Some(Instant::now());
if failure_count >= self.config.failure_threshold {
*self.state.write().await = CircuitBreakerState::Open;
self.success_count.store(0, Ordering::Relaxed);
}
}
pub async fn is_open(&self) -> bool {
matches!(*self.state.read().await, CircuitBreakerState::Open)
}
}
#[derive(Debug)]
enum CircuitBreakerError<E> {
CircuitOpen,
OperationFailed(E),
}
/// Resource manager for coordinating concurrent access and preventing race conditions
#[derive(Debug)]
pub struct WebDAVResourceManager {
/// Semaphore to limit concurrent operations
operation_semaphore: Arc<Semaphore>,
/// Per-directory locks to prevent race conditions
directory_locks: Arc<RwLock<HashMap<String, Arc<Mutex<()>>>>>,
/// Global operation counter for monitoring
active_operations: Arc<AtomicUsize>,
/// Rate limiting
last_operation_time: Arc<Mutex<Instant>>,
min_operation_interval: Duration,
}
impl WebDAVResourceManager {
pub fn new(max_concurrent_operations: usize, min_operation_interval_ms: u64) -> Self {
Self {
operation_semaphore: Arc::new(Semaphore::new(max_concurrent_operations)),
directory_locks: Arc::new(RwLock::new(HashMap::new())),
active_operations: Arc::new(AtomicUsize::new(0)),
last_operation_time: Arc::new(Mutex::new(Instant::now())),
min_operation_interval: Duration::from_millis(min_operation_interval_ms),
}
}
/// Acquire resources for a WebDAV operation
pub async fn acquire_operation_permit(&self) -> anyhow::Result<OperationPermit> {
// Wait for semaphore permit
let permit = self.operation_semaphore.clone().acquire_owned().await
.map_err(|e| anyhow::anyhow!("Failed to acquire operation permit: {}", e))?;
// Rate limiting
{
let mut last_time = self.last_operation_time.lock().await;
let elapsed = last_time.elapsed();
if elapsed < self.min_operation_interval {
let sleep_duration = self.min_operation_interval - elapsed;
drop(last_time);
sleep(sleep_duration).await;
*self.last_operation_time.lock().await = Instant::now();
} else {
*last_time = Instant::now();
}
}
// Increment active operations counter
self.active_operations.fetch_add(1, Ordering::Relaxed);
Ok(OperationPermit {
_permit: permit,
active_operations: self.active_operations.clone(),
})
}
/// Acquire a directory-specific lock to prevent race conditions
pub async fn acquire_directory_lock(&self, directory_path: &str) -> Arc<Mutex<()>> {
let mut locks = self.directory_locks.write().await;
// Get or create a lock for this directory
let lock = locks.entry(directory_path.to_string())
.or_insert_with(|| Arc::new(Mutex::new(())))
.clone();
// Clean up old locks periodically
if locks.len() > 1000 {
// Keep only the most recently accessed locks
locks.clear();
locks.insert(directory_path.to_string(), lock.clone());
warn!("Cleared directory locks cache due to size limit");
}
lock
}
/// Get current number of active operations
pub fn active_operations_count(&self) -> usize {
self.active_operations.load(Ordering::Relaxed)
}
}
/// RAII permit for WebDAV operations
pub struct OperationPermit {
_permit: tokio::sync::OwnedSemaphorePermit,
active_operations: Arc<AtomicUsize>,
}
impl Drop for OperationPermit {
fn drop(&mut self) {
self.active_operations.fetch_sub(1, Ordering::Relaxed);
}
}
/// Configuration for stress testing
#[derive(Debug, Clone)]
pub struct StressTestConfig {
pub webdav_server_url: String,
pub username: String,
pub password: String,
pub stress_level: StressLevel,
pub test_timeout_seconds: u64,
pub max_concurrent_operations: usize,
pub loop_detection_threshold: usize,
pub scan_timeout_seconds: u64,
}
#[derive(Debug, Clone, PartialEq)]
pub enum StressLevel {
Light,
Medium,
Heavy,
Extreme,
}
impl StressLevel {
fn max_depth(&self) -> usize {
match self {
StressLevel::Light => 5,
StressLevel::Medium => 10,
StressLevel::Heavy => 15,
StressLevel::Extreme => 25,
}
}
fn concurrent_operations(&self) -> usize {
match self {
StressLevel::Light => 2,
StressLevel::Medium => 4,
StressLevel::Heavy => 8,
StressLevel::Extreme => 16,
}
}
fn operation_count(&self) -> usize {
match self {
StressLevel::Light => 50,
StressLevel::Medium => 200,
StressLevel::Heavy => 500,
StressLevel::Extreme => 1000,
}
}
}
impl std::str::FromStr for StressLevel {
type Err = anyhow::Error;
fn from_str(s: &str) -> Result<Self> {
match s.to_lowercase().as_str() {
"light" => Ok(StressLevel::Light),
"medium" => Ok(StressLevel::Medium),
"heavy" => Ok(StressLevel::Heavy),
"extreme" => Ok(StressLevel::Extreme),
_ => Err(anyhow!("Invalid stress level: {}", s)),
}
}
}
/// Bounded LRU cache for directory access tracking to prevent memory leaks
#[derive(Debug)]
struct BoundedLruCache<K, V> {
data: HashMap<K, V>,
access_order: VecDeque<K>,
max_size: usize,
}
impl<K: Clone + Eq + std::hash::Hash, V> BoundedLruCache<K, V> {
fn new(max_size: usize) -> Self {
Self {
data: HashMap::new(),
access_order: VecDeque::new(),
max_size,
}
}
fn get(&mut self, key: &K) -> Option<&V> {
if self.data.contains_key(key) {
// Move to front (most recently used)
self.access_order.retain(|k| k != key);
self.access_order.push_back(key.clone());
self.data.get(key)
} else {
None
}
}
fn insert(&mut self, key: K, value: V) {
if self.data.contains_key(&key) {
// Update existing
self.data.insert(key.clone(), value);
self.access_order.retain(|k| k != &key);
self.access_order.push_back(key);
} else {
// Add new
if self.data.len() >= self.max_size {
// Evict least recently used
if let Some(lru_key) = self.access_order.pop_front() {
self.data.remove(&lru_key);
}
}
self.data.insert(key.clone(), value);
self.access_order.push_back(key);
}
}
fn len(&self) -> usize {
self.data.len()
}
fn clear(&mut self) {
self.data.clear();
self.access_order.clear();
}
}
/// Monitors WebDAV operations for infinite loop patterns with bounded memory usage
#[derive(Debug)]
pub struct LoopDetectionMonitor {
directory_access_counts: Arc<RwLock<BoundedLruCache<String, AtomicUsize>>>,
access_timestamps: Arc<RwLock<BoundedLruCache<String, VecDeque<Instant>>>>,
suspected_loops: Arc<RwLock<HashSet<String>>>,
monitoring_active: Arc<AtomicBool>,
detection_threshold: usize,
/// Threshold for rapid repeated access detection (accesses in 60 seconds)
/// Derived as detection_threshold / 2 to allow for legitimate concurrent access
rapid_access_threshold: usize,
circuit_breaker: Arc<CircuitBreaker>,
cleanup_interval: Arc<Mutex<Option<tokio::task::JoinHandle<()>>>>,
}
impl LoopDetectionMonitor {
pub fn new(detection_threshold: usize) -> Self {
// Derive rapid access threshold as half of detection threshold
// This allows for legitimate concurrent operations while still detecting loops
let rapid_access_threshold = std::cmp::max(detection_threshold / 2, 10);
let monitor = Self {
directory_access_counts: Arc::new(RwLock::new(BoundedLruCache::new(1000))), // Max 1000 directories
access_timestamps: Arc::new(RwLock::new(BoundedLruCache::new(1000))), // Max 1000 directories
suspected_loops: Arc::new(RwLock::new(HashSet::new())),
monitoring_active: Arc::new(AtomicBool::new(true)),
detection_threshold,
rapid_access_threshold,
circuit_breaker: Arc::new(CircuitBreaker::new(10, Duration::from_secs(60))),
cleanup_interval: Arc::new(Mutex::new(None)),
};
// Start periodic cleanup task
monitor.start_cleanup_task();
monitor
}
fn start_cleanup_task(&self) {
let access_timestamps = self.access_timestamps.clone();
let suspected_loops = self.suspected_loops.clone();
let monitoring_active = self.monitoring_active.clone();
let cleanup_interval = self.cleanup_interval.clone();
let task = tokio::spawn(async move {
let mut interval = interval(Duration::from_secs(300)); // Cleanup every 5 minutes
while monitoring_active.load(Ordering::Relaxed) {
interval.tick().await;
// Clean old timestamps
{
let mut timestamps = access_timestamps.write().await;
let cutoff = Instant::now() - Duration::from_secs(3600); // Keep only last hour
// Clear old entries from timestamps cache
for (_, timestamp_queue) in timestamps.data.iter_mut() {
timestamp_queue.retain(|&timestamp| timestamp > cutoff);
}
}
// Limit suspected loops set size
{
let mut loops = suspected_loops.write().await;
if loops.len() > 100 { // Max 100 suspected directories
loops.clear(); // Reset if too many
warn!("Cleared suspected loops cache due to size limit");
}
}
}
});
// Store the task handle
if let Ok(mut handle) = cleanup_interval.try_lock() {
*handle = Some(task);
};
}
/// Record a directory access for loop detection with circuit breaker protection
pub async fn record_directory_access(&self, directory_path: &str) {
if !self.monitoring_active.load(Ordering::Relaxed) {
return;
}
// Use circuit breaker to protect against cascade failures
let record_result = self.circuit_breaker.call(async {
self.record_directory_access_internal(directory_path).await
}).await;
if let Err(CircuitBreakerError::CircuitOpen) = record_result {
warn!("Circuit breaker open - skipping directory access recording for: {}", directory_path);
}
}
async fn record_directory_access_internal(&self, directory_path: &str) -> Result<(), anyhow::Error> {
let now = Instant::now();
// Update access count with bounded cache
{
let mut counts = self.directory_access_counts.write().await;
// Get or create counter
let current_count = if let Some(counter) = counts.get(&directory_path.to_string()) {
counter.fetch_add(1, Ordering::Relaxed) + 1
} else {
counts.insert(directory_path.to_string(), AtomicUsize::new(1));
1
};
if current_count > self.detection_threshold {
warn!(
"Potential infinite loop detected for directory: {} (accessed {} times)",
directory_path, current_count
);
self.suspected_loops.write().await.insert(directory_path.to_string());
return Err(anyhow::anyhow!("Loop detection threshold exceeded"));
}
}
// Track access timestamps for pattern analysis with bounded cache
{
let mut timestamps = self.access_timestamps.write().await;
// Get or create timestamp queue
let mut timestamp_queue = if let Some(queue) = timestamps.get(&directory_path.to_string()) {
queue.clone()
} else {
VecDeque::new()
};
timestamp_queue.push_back(now);
// Keep only recent timestamps (last 5 minutes) and limit queue size
let cutoff = now - Duration::from_secs(300);
while let Some(&front_time) = timestamp_queue.front() {
if front_time <= cutoff || timestamp_queue.len() > 100 { // Max 100 timestamps per directory
timestamp_queue.pop_front();
} else {
break;
}
}
// Check for rapid repeated access pattern
let recent_accesses = timestamp_queue.iter()
.filter(|&&timestamp| timestamp > now - Duration::from_secs(60))
.count();
if recent_accesses > self.rapid_access_threshold {
warn!(
"Rapid repeated access pattern detected for directory: {} ({} accesses in last minute, threshold: {})",
directory_path, recent_accesses, self.rapid_access_threshold
);
self.suspected_loops.write().await.insert(directory_path.to_string());
return Err(anyhow::anyhow!("Rapid access pattern detected"));
}
// Update the bounded cache
timestamps.insert(directory_path.to_string(), timestamp_queue);
}
Ok(())
}
/// Check if a directory is suspected of causing infinite loops
pub async fn is_suspected_loop(&self, directory_path: &str) -> bool {
self.suspected_loops.read().await.contains(directory_path)
}
/// Get all suspected loop directories
pub async fn get_suspected_loops(&self) -> Vec<String> {
self.suspected_loops.read().await.iter().cloned().collect()
}
/// Stop monitoring and clean up resources
pub async fn stop_monitoring(&self) {
self.monitoring_active.store(false, Ordering::Relaxed);
// Stop cleanup task
let mut handle = self.cleanup_interval.lock().await;
if let Some(task) = handle.take() {
task.abort();
}
// Clear all data to free memory
self.directory_access_counts.write().await.clear();
self.access_timestamps.write().await.clear();
self.suspected_loops.write().await.clear();
}
/// Get statistics about directory access patterns
pub async fn get_statistics(&self) -> LoopDetectionStatistics {
let counts = self.directory_access_counts.read().await;
let suspected = self.suspected_loops.read().await;
let total_directories = counts.len();
let total_accesses: usize = counts.data.values()
.map(|counter| counter.load(Ordering::Relaxed))
.sum();
let max_accesses = counts.data.values()
.map(|counter| counter.load(Ordering::Relaxed))
.max()
.unwrap_or(0);
let avg_accesses = if total_directories > 0 {
total_accesses as f64 / total_directories as f64
} else {
0.0
};
LoopDetectionStatistics {
total_directories_monitored: total_directories,
total_directory_accesses: total_accesses,
suspected_loop_count: suspected.len(),
max_accesses_per_directory: max_accesses,
average_accesses_per_directory: avg_accesses,
suspected_directories: suspected.iter().cloned().collect(),
}
}
}
/// Statistics from loop detection monitoring
#[derive(Debug, Serialize, Deserialize)]
pub struct LoopDetectionStatistics {
pub total_directories_monitored: usize,
pub total_directory_accesses: usize,
pub suspected_loop_count: usize,
pub max_accesses_per_directory: usize,
pub average_accesses_per_directory: f64,
pub suspected_directories: Vec<String>,
}
/// Performance metrics for WebDAV operations
#[derive(Debug, Serialize, Deserialize)]
pub struct WebDAVPerformanceMetrics {
pub total_operations: usize,
pub successful_operations: usize,
pub failed_operations: usize,
pub average_operation_duration_ms: f64,
pub max_operation_duration_ms: u64,
pub min_operation_duration_ms: u64,
pub timeout_count: usize,
pub error_patterns: HashMap<String, usize>,
pub loop_detection_stats: LoopDetectionStatistics,
}
/// Create a WebDAV service configured for stress testing
fn create_stress_test_webdav_service(config: &StressTestConfig) -> Result<WebDAVService> {
let webdav_config = WebDAVConfig {
server_url: config.webdav_server_url.clone(),
username: config.username.clone(),
password: config.password.clone(),
server_type: None, // Will auto-detect
timeout_seconds: config.scan_timeout_seconds,
watch_folders: vec!["/".to_string()],
file_extensions: vec![],
};
WebDAVService::new(webdav_config)
}
/// Get stress test configuration, optionally with mock server URL
fn get_stress_test_config(mock_server_url: Option<String>) -> Result<StressTestConfig> {
let webdav_server_url = mock_server_url
.or_else(|| std::env::var("WEBDAV_SERVER_URL").ok())
.unwrap_or_else(|| "http://localhost:8080".to_string());
let username = std::env::var("WEBDAV_USERNAME")
.unwrap_or_else(|_| "admin".to_string());
let password = std::env::var("WEBDAV_PASSWORD")
.unwrap_or_else(|_| "password".to_string());
let stress_level = std::env::var("STRESS_LEVEL")
.unwrap_or_else(|_| "light".to_string()) // Use light for tests
.parse::<StressLevel>()?;
let test_timeout_seconds = std::env::var("TEST_TIMEOUT_SECONDS")
.unwrap_or_else(|_| "120".to_string()) // Shorter timeout for tests
.parse::<u64>()?;
// Calculate loop detection threshold based on stress level
// The test cycles through 8 paths, so each path is accessed (operation_count / 8) times
// We set the threshold to 3x the expected accesses to allow for legitimate concurrent access
// while still detecting actual infinite loops (which would have much higher access counts)
let num_test_paths = 8;
let expected_accesses_per_path = stress_level.operation_count() / num_test_paths;
let loop_detection_threshold = std::cmp::max(expected_accesses_per_path * 3, 20);
Ok(StressTestConfig {
webdav_server_url,
username,
password,
stress_level,
test_timeout_seconds,
max_concurrent_operations: 4, // Reduced for tests
loop_detection_threshold,
scan_timeout_seconds: 15, // Shorter scan timeout
})
}
#[cfg(feature = "stress-testing")]
#[tokio::test]
async fn test_infinite_loop_detection() -> Result<()> {
init_tracing();
info!("Starting infinite loop detection stress test");
// Use real WebDAV server if WEBDAV_SERVER_URL is set (e.g., in CI with Dufs),
// otherwise fall back to mock server for local testing
let mut mock_server: Option<MockWebDAVServer> = None;
let config = if std::env::var("WEBDAV_SERVER_URL").is_ok() {
info!("Using real WebDAV server from WEBDAV_SERVER_URL environment variable");
get_stress_test_config(None)?
} else {
info!("No WEBDAV_SERVER_URL set, starting mock WebDAV server for local testing");
let server = MockWebDAVServer::start().await
.map_err(|e| anyhow!("Failed to start mock server: {}", e))?;
let url = server.url();
mock_server = Some(server);
get_stress_test_config(Some(url))?
};
info!("WebDAV server URL: {}", config.webdav_server_url);
let webdav_service = create_stress_test_webdav_service(&config)?;
// Pre-flight connectivity check - fail fast if server is not reachable
info!("🔍 Performing pre-flight connectivity check...");
match timeout(
Duration::from_secs(10),
webdav_service.discover_files("/", false)
).await {
Ok(Ok(_)) => {
info!("✅ Pre-flight check passed - WebDAV server is reachable");
}
Ok(Err(e)) => {
error!("❌ Pre-flight check FAILED - WebDAV server is not reachable: {}", e);
if let Some(mut server) = mock_server {
server.stop().await;
}
return Err(anyhow!(
"Pre-flight connectivity check failed - WebDAV server at {} is not responding: {}. \
Please ensure the server is running and accessible.",
config.webdav_server_url, e
));
}
Err(_) => {
error!("❌ Pre-flight check TIMED OUT - WebDAV server is not responding");
if let Some(mut server) = mock_server {
server.stop().await;
}
return Err(anyhow!(
"Pre-flight connectivity check timed out - WebDAV server at {} is not responding within 10 seconds. \
Please ensure the server is running and accessible.",
config.webdav_server_url
));
}
}
let loop_monitor = Arc::new(LoopDetectionMonitor::new(config.loop_detection_threshold));
// Test with timeout to prevent actual infinite loops in CI
let test_result = timeout(
Duration::from_secs(config.test_timeout_seconds),
perform_loop_detection_test(&webdav_service, &loop_monitor, &config)
).await;
// Always clean up resources
let cleanup_result = match test_result {
Ok(Ok((successful, failed))) => {
info!("Loop detection test completed successfully");
// Analyze results
let stats = loop_monitor.get_statistics().await;
info!("Loop detection statistics: {:?}", stats);
// Test should fail if ALL operations failed (indicates server connectivity issue)
if successful == 0 && failed > 0 {
error!("❌ All {} operations failed - server connectivity issue", failed);
return Err(anyhow!("All operations failed - unable to connect to WebDAV server"));
}
// Test should pass if no infinite loops were detected
if stats.suspected_loop_count == 0 {
info!("✅ No infinite loops detected - test passed ({} successful, {} failed operations)",
successful, failed);
Ok(())
} else {
error!("❌ {} suspected infinite loops detected", stats.suspected_loop_count);
for dir in &stats.suspected_directories {
error!(" - Suspected loop directory: {}", dir);
}
Err(anyhow!("Infinite loop patterns detected during stress test"))
}
},
Ok(Err(e)) => {
error!("Loop detection test failed: {}", e);
Err(e)
},
Err(_) => {
error!("❌ Test timed out - possible infinite loop detected!");
let stats = loop_monitor.get_statistics().await;
error!("Final statistics: {:?}", stats);
Err(anyhow!("Test timed out - infinite loop suspected"))
}
};
// Clean up monitoring resources
loop_monitor.stop_monitoring().await;
if let Some(mut server) = mock_server {
server.stop().await;
}
cleanup_result
}
async fn perform_loop_detection_test(
webdav_service: &WebDAVService,
loop_monitor: &Arc<LoopDetectionMonitor>,
config: &StressTestConfig,
) -> Result<(usize, usize)> { // Returns (successful, failed) counts
info!("Performing WebDAV operations with loop detection monitoring...");
let test_paths = vec![
"/",
"/main-structure",
"/loop-traps",
"/loop-traps/deep-nesting",
"/symlink-test",
"/test-repo-1",
"/large-directory",
"/unicode-test",
];
let operation_count = config.stress_level.operation_count();
let mut handles = Vec::new();
// Create resource manager for coordination
let resource_manager = Arc::new(WebDAVResourceManager::new(
config.max_concurrent_operations,
100, // Minimum 100ms between operations
));
// Perform concurrent WebDAV operations
for i in 0..operation_count {
let path = test_paths[i % test_paths.len()].to_string();
let path_for_check = path.clone();
let service = webdav_service.clone();
let monitor = loop_monitor.clone();
let resource_mgr = resource_manager.clone();
let handle = tokio::spawn(async move {
// Acquire operation permit for resource coordination
let _permit = match resource_mgr.acquire_operation_permit().await {
Ok(permit) => permit,
Err(e) => {
warn!("Failed to acquire operation permit: {}", e);
return Err(anyhow::anyhow!("Resource acquisition failed"));
}
};
// Acquire directory lock to prevent race conditions
let dir_lock_arc = resource_mgr.acquire_directory_lock(&path).await;
let _dir_lock = dir_lock_arc.lock().await;
// Record directory access for loop detection
monitor.record_directory_access(&path).await;
// Perform WebDAV discovery operation
match service.discover_files_and_directories(&path, false).await {
Ok(result) => {
debug!("Discovered {} files and {} directories in {}",
result.files.len(), result.directories.len(), path);
// If we find subdirectories, recursively scan some of them
// Skip directories that match the parent path (mock server returns parent as a directory)
for subdir in result.directories.iter()
.filter(|d| d.relative_path != path && d.relative_path.trim_end_matches('/') != path)
.take(3)
{
monitor.record_directory_access(&subdir.relative_path).await;
match service.discover_files(&subdir.relative_path, false).await {
Ok(files) => {
debug!("Found {} files in subdirectory {}", files.len(), subdir.relative_path);
},
Err(e) => {
warn!("Failed to scan subdirectory {}: {}", subdir.relative_path, e);
}
}
}
Ok(())
},
Err(e) => {
warn!("Failed to discover files in {}: {}", path, e);
Err(e)
}
}
});
handles.push(handle);
// Check for suspected loops periodically
if i % 10 == 0 {
if loop_monitor.is_suspected_loop(&path_for_check).await {
warn!("Suspected loop detected for path: {} - continuing test to gather data", path_for_check);
}
}
// Small delay to prevent overwhelming the server
if i % 5 == 0 {
sleep(Duration::from_millis(100)).await;
}
}
// Wait for all operations to complete
info!("Waiting for {} operations to complete...", handles.len());
let mut successful = 0;
let mut failed = 0;
for handle in handles {
match handle.await {
Ok(Ok(())) => successful += 1,
Ok(Err(_)) => failed += 1,
Err(_) => failed += 1,
}
}
info!("Operations completed: {} successful, {} failed", successful, failed);
// Final check for loop patterns
let final_stats = loop_monitor.get_statistics().await;
if final_stats.suspected_loop_count > 0 {
warn!("Final loop detection results:");
for dir in &final_stats.suspected_directories {
warn!(" - {}: {} accesses", dir,
final_stats.max_accesses_per_directory);
}
}
Ok((successful, failed))
}
#[cfg(feature = "stress-testing")]
#[tokio::test]
async fn test_directory_scanning_stress() -> Result<()> {
init_tracing();
info!("Starting directory scanning stress test");
// Use real WebDAV server if WEBDAV_SERVER_URL is set (e.g., in CI with Dufs),
// otherwise fall back to mock server for local testing
let mut mock_server: Option<MockWebDAVServer> = None;
let config = if std::env::var("WEBDAV_SERVER_URL").is_ok() {
info!("Using real WebDAV server from WEBDAV_SERVER_URL environment variable");
get_stress_test_config(None)?
} else {
info!("No WEBDAV_SERVER_URL set, starting mock WebDAV server for local testing");
let server = MockWebDAVServer::start().await
.map_err(|e| anyhow!("Failed to start mock server: {}", e))?;
let url = server.url();
mock_server = Some(server);
get_stress_test_config(Some(url))?
};
info!("WebDAV server URL: {}", config.webdav_server_url);
let webdav_service = create_stress_test_webdav_service(&config)?;
// Pre-flight connectivity check - fail fast if server is not reachable
info!("🔍 Performing pre-flight connectivity check...");
match timeout(
Duration::from_secs(10),
webdav_service.discover_files("/", false)
).await {
Ok(Ok(_)) => {
info!("✅ Pre-flight check passed - WebDAV server is reachable");
}
Ok(Err(e)) => {
error!("❌ Pre-flight check FAILED - WebDAV server is not reachable: {}", e);
if let Some(mut server) = mock_server {
server.stop().await;
}
return Err(anyhow!(
"Pre-flight connectivity check failed - WebDAV server at {} is not responding: {}",
config.webdav_server_url, e
));
}
Err(_) => {
error!("❌ Pre-flight check TIMED OUT - WebDAV server is not responding");
if let Some(mut server) = mock_server {
server.stop().await;
}
return Err(anyhow!(
"Pre-flight connectivity check timed out - WebDAV server at {} is not responding within 10 seconds",
config.webdav_server_url
));
}
}
// Test deep recursive scanning
let deep_scan_result = timeout(
Duration::from_secs(config.test_timeout_seconds / 2),
test_deep_recursive_scanning(&webdav_service, &config)
).await;
match deep_scan_result {
Ok(Ok(metrics)) => {
info!("Deep scanning completed successfully");
info!("Scan metrics: {} directories scanned in {:.2}s",
metrics.total_operations, metrics.average_operation_duration_ms / 1000.0);
if metrics.timeout_count > 0 {
warn!("⚠️ {} operations timed out during deep scanning", metrics.timeout_count);
}
},
Ok(Err(e)) => {
error!("Deep scanning test failed: {}", e);
return Err(e);
},
Err(_) => {
error!("❌ Deep scanning test timed out!");
return Err(anyhow!("Deep scanning test timed out"));
}
}
// Test wide directory scanning
let wide_scan_result = timeout(
Duration::from_secs(config.test_timeout_seconds / 2),
test_wide_directory_scanning(&webdav_service, &config)
).await;
let result = match wide_scan_result {
Ok(Ok(metrics)) => {
info!("Wide scanning completed successfully");
info!("Scan metrics: {} directories scanned, {:.2}% success rate",
metrics.total_operations,
(metrics.successful_operations as f64 / metrics.total_operations as f64) * 100.0);
Ok(())
},
Ok(Err(e)) => {
error!("Wide scanning test failed: {}", e);
Err(e)
},
Err(_) => {
error!("❌ Wide scanning test timed out!");
Err(anyhow!("Wide scanning test timed out"))
}
};
// Clean up mock server if we started one
if let Some(mut server) = mock_server {
server.stop().await;
}
result
}
async fn test_deep_recursive_scanning(
webdav_service: &WebDAVService,
config: &StressTestConfig
) -> Result<WebDAVPerformanceMetrics> {
info!("Testing deep recursive directory scanning...");
let mut metrics = WebDAVPerformanceMetrics {
total_operations: 0,
successful_operations: 0,
failed_operations: 0,
average_operation_duration_ms: 0.0,
max_operation_duration_ms: 0,
min_operation_duration_ms: u64::MAX,
timeout_count: 0,
error_patterns: HashMap::new(),
loop_detection_stats: LoopDetectionStatistics {
total_directories_monitored: 0,
total_directory_accesses: 0,
suspected_loop_count: 0,
max_accesses_per_directory: 0,
average_accesses_per_directory: 0.0,
suspected_directories: Vec::new(),
},
};
let deep_paths = vec![
"/loop-traps/deep-nesting",
"/main-structure",
];
let mut total_duration = 0u64;
for path in deep_paths {
info!("Starting deep recursive scan of: {}", path);
let start_time = Instant::now();
match timeout(
Duration::from_secs(config.scan_timeout_seconds),
webdav_service.discover_files(path, true) // recursive=true
).await {
Ok(Ok(files)) => {
let duration = start_time.elapsed();
let duration_ms = duration.as_millis() as u64;
info!("✅ Deep scan of {} completed: {} files found in {}ms",
path, files.len(), duration_ms);
metrics.successful_operations += 1;
total_duration += duration_ms;
metrics.max_operation_duration_ms = metrics.max_operation_duration_ms.max(duration_ms);
metrics.min_operation_duration_ms = metrics.min_operation_duration_ms.min(duration_ms);
},
Ok(Err(e)) => {
warn!("❌ Deep scan of {} failed: {}", path, e);
metrics.failed_operations += 1;
let error_type = classify_webdav_error(&e);
*metrics.error_patterns.entry(error_type).or_insert(0) += 1;
},
Err(_) => {
warn!("⏱️ Deep scan of {} timed out after {}s", path, config.scan_timeout_seconds);
metrics.timeout_count += 1;
metrics.failed_operations += 1;
}
}
metrics.total_operations += 1;
}
if metrics.successful_operations > 0 {
metrics.average_operation_duration_ms = total_duration as f64 / metrics.successful_operations as f64;
}
if metrics.min_operation_duration_ms == u64::MAX {
metrics.min_operation_duration_ms = 0;
}
Ok(metrics)
}
async fn test_wide_directory_scanning(
webdav_service: &WebDAVService,
config: &StressTestConfig
) -> Result<WebDAVPerformanceMetrics> {
info!("Testing wide directory scanning (many directories, shallow depth)...");
let mut metrics = WebDAVPerformanceMetrics {
total_operations: 0,
successful_operations: 0,
failed_operations: 0,
average_operation_duration_ms: 0.0,
max_operation_duration_ms: 0,
min_operation_duration_ms: u64::MAX,
timeout_count: 0,
error_patterns: HashMap::new(),
loop_detection_stats: LoopDetectionStatistics {
total_directories_monitored: 0,
total_directory_accesses: 0,
suspected_loop_count: 0,
max_accesses_per_directory: 0,
average_accesses_per_directory: 0.0,
suspected_directories: Vec::new(),
},
};
// First, discover all available directories
let root_discovery = webdav_service.discover_files_and_directories("/", false).await?;
let directories_to_scan: Vec<_> = root_discovery.directories
.into_iter()
.take(20) // Limit to first 20 directories
.collect();
info!("Found {} directories to scan", directories_to_scan.len());
let mut handles = Vec::new();
// Create resource manager for coordinated concurrent scanning
let resource_manager = Arc::new(WebDAVResourceManager::new(
8, // Limit concurrent scans to prevent overwhelming the server
200, // Minimum 200ms between scan operations
));
// Scan directories concurrently
for dir_info in directories_to_scan {
let service = webdav_service.clone();
let dir_path = dir_info.relative_path.clone();
let scan_timeout = config.scan_timeout_seconds;
let resource_mgr = resource_manager.clone();
let handle = tokio::spawn(async move {
// Acquire operation permit
let _permit = match resource_mgr.acquire_operation_permit().await {
Ok(permit) => permit,
Err(e) => {
warn!("Failed to acquire scan permit for {}: {}", dir_path, e);
return Err("resource_acquisition_failed".to_string());
}
};
// Acquire directory lock
let dir_lock_arc = resource_mgr.acquire_directory_lock(&dir_path).await;
let _dir_lock = dir_lock_arc.lock().await;
let start_time = Instant::now();
match timeout(
Duration::from_secs(scan_timeout),
service.discover_files(&dir_path, false) // non-recursive
).await {
Ok(Ok(files)) => {
let duration = start_time.elapsed().as_millis() as u64;
debug!("✅ Scanned {}: {} files in {}ms", dir_path, files.len(), duration);
Ok((duration, files.len()))
},
Ok(Err(e)) => {
warn!("❌ Failed to scan {}: {}", dir_path, e);
Err(classify_webdav_error(&e))
},
Err(_) => {
warn!("⏱️ Scan of {} timed out", dir_path);
Err("timeout".to_string())
}
}
});
handles.push(handle);
}
// Collect results
let mut total_duration = 0u64;
for handle in handles {
match handle.await {
Ok(Ok((duration, _file_count))) => {
metrics.successful_operations += 1;
total_duration += duration;
metrics.max_operation_duration_ms = metrics.max_operation_duration_ms.max(duration);
metrics.min_operation_duration_ms = metrics.min_operation_duration_ms.min(duration);
},
Ok(Err(error_type)) => {
metrics.failed_operations += 1;
if error_type == "timeout" {
metrics.timeout_count += 1;
} else {
*metrics.error_patterns.entry(error_type).or_insert(0) += 1;
}
},
Err(_) => {
metrics.failed_operations += 1;
}
}
metrics.total_operations += 1;
}
if metrics.successful_operations > 0 {
metrics.average_operation_duration_ms = total_duration as f64 / metrics.successful_operations as f64;
}
if metrics.min_operation_duration_ms == u64::MAX {
metrics.min_operation_duration_ms = 0;
}
Ok(metrics)
}
#[cfg(feature = "stress-testing")]
#[tokio::test]
async fn test_concurrent_webdav_access() -> Result<()> {
init_tracing();
info!("Starting concurrent WebDAV access stress test");
// Use real WebDAV server if WEBDAV_SERVER_URL is set (e.g., in CI with Dufs),
// otherwise fall back to mock server for local testing
let mut mock_server: Option<MockWebDAVServer> = None;
let config = if std::env::var("WEBDAV_SERVER_URL").is_ok() {
info!("Using real WebDAV server from WEBDAV_SERVER_URL environment variable");
get_stress_test_config(None)?
} else {
info!("No WEBDAV_SERVER_URL set, starting mock WebDAV server for local testing");
let server = MockWebDAVServer::start().await
.map_err(|e| anyhow!("Failed to start mock server: {}", e))?;
let url = server.url();
mock_server = Some(server);
get_stress_test_config(Some(url))?
};
info!("WebDAV server URL: {}", config.webdav_server_url);
let webdav_service = create_stress_test_webdav_service(&config)?;
// Pre-flight connectivity check - fail fast if server is not reachable
info!("🔍 Performing pre-flight connectivity check...");
match timeout(
Duration::from_secs(10),
webdav_service.discover_files("/", false)
).await {
Ok(Ok(_)) => {
info!("✅ Pre-flight check passed - WebDAV server is reachable");
}
Ok(Err(e)) => {
error!("❌ Pre-flight check FAILED - WebDAV server is not reachable: {}", e);
if let Some(mut server) = mock_server {
server.stop().await;
}
return Err(anyhow!(
"Pre-flight connectivity check failed - WebDAV server at {} is not responding: {}",
config.webdav_server_url, e
));
}
Err(_) => {
error!("❌ Pre-flight check TIMED OUT - WebDAV server is not responding");
if let Some(mut server) = mock_server {
server.stop().await;
}
return Err(anyhow!(
"Pre-flight connectivity check timed out - WebDAV server at {} is not responding within 10 seconds",
config.webdav_server_url
));
}
}
let concurrent_operations = config.stress_level.concurrent_operations();
let operations_per_worker = 20;
info!("Starting {} concurrent workers, {} operations each",
concurrent_operations, operations_per_worker);
let mut handles = Vec::new();
let start_time = Instant::now();
// Create resource manager for coordinated concurrent access
let resource_manager = Arc::new(WebDAVResourceManager::new(
concurrent_operations,
50, // Minimum 50ms between operations for this test
));
for worker_id in 0..concurrent_operations {
let service = webdav_service.clone();
let timeout_secs = config.test_timeout_seconds / 4; // Quarter of total timeout per worker
let resource_mgr = resource_manager.clone();
let handle = tokio::spawn(async move {
info!("Worker {} starting", worker_id);
let test_paths = vec![
"/",
"/main-structure",
"/loop-traps",
"/test-repo-1",
"/large-directory",
"/unicode-test",
];
let mut worker_successful = 0;
let mut worker_failed = 0;
for op_id in 0..operations_per_worker {
let path = &test_paths[op_id % test_paths.len()];
// Acquire operation permit for coordination
let _permit = match resource_mgr.acquire_operation_permit().await {
Ok(permit) => permit,
Err(e) => {
warn!("Worker {} failed to acquire permit: {}", worker_id, e);
worker_failed += 1;
continue;
}
};
// Acquire directory lock to prevent race conditions on same path
let dir_lock_arc = resource_mgr.acquire_directory_lock(path).await;
let _dir_lock = dir_lock_arc.lock().await;
match timeout(
Duration::from_secs(timeout_secs),
service.discover_files(path, false)
).await {
Ok(Ok(files)) => {
worker_successful += 1;
if op_id % 10 == 0 {
debug!("Worker {} op {}: {} files in {}", worker_id, op_id, files.len(), path);
}
},
Ok(Err(e)) => {
worker_failed += 1;
debug!("Worker {} op {} failed: {}", worker_id, op_id, e);
},
Err(_) => {
worker_failed += 1;
warn!("Worker {} op {} timed out", worker_id, op_id);
}
}
// Small delay between operations
sleep(Duration::from_millis(50)).await;
}
info!("Worker {} completed: {} successful, {} failed",
worker_id, worker_successful, worker_failed);
(worker_successful, worker_failed)
});
handles.push(handle);
}
// Wait for all workers to complete
let mut total_successful = 0;
let mut total_failed = 0;
for handle in handles {
match handle.await {
Ok((successful, failed)) => {
total_successful += successful;
total_failed += failed;
},
Err(e) => {
error!("Worker task failed: {}", e);
total_failed += operations_per_worker;
}
}
}
let total_time = start_time.elapsed();
let total_operations = total_successful + total_failed;
let success_rate = if total_operations > 0 {
(total_successful as f64 / total_operations as f64) * 100.0
} else {
0.0
};
info!("Concurrent access test completed in {:.2}s", total_time.as_secs_f64());
info!("Total operations: {} ({}% success rate)", total_operations, success_rate);
info!("Operations per second: {:.2}", total_operations as f64 / total_time.as_secs_f64());
// Clean up mock server if we started one
if let Some(mut server) = mock_server {
server.stop().await;
}
// Test passes if success rate is reasonable (>= 80%)
if success_rate >= 80.0 {
info!("✅ Concurrent access test passed");
Ok(())
} else {
error!("❌ Concurrent access test failed: low success rate ({:.1}%)", success_rate);
Err(anyhow!("Concurrent access test failed with {:.1}% success rate", success_rate))
}
}
#[cfg(feature = "stress-testing")]
#[tokio::test]
async fn test_edge_case_handling() -> Result<()> {
init_tracing();
info!("Starting edge case handling stress test");
// Use real WebDAV server if WEBDAV_SERVER_URL is set (e.g., in CI with Dufs),
// otherwise fall back to mock server for local testing
let mut mock_server: Option<MockWebDAVServer> = None;
let config = if std::env::var("WEBDAV_SERVER_URL").is_ok() {
info!("Using real WebDAV server from WEBDAV_SERVER_URL environment variable");
get_stress_test_config(None)?
} else {
info!("No WEBDAV_SERVER_URL set, starting mock WebDAV server for local testing");
let server = MockWebDAVServer::start().await
.map_err(|e| anyhow!("Failed to start mock server: {}", e))?;
let url = server.url();
mock_server = Some(server);
get_stress_test_config(Some(url))?
};
info!("WebDAV server URL: {}", config.webdav_server_url);
let webdav_service = create_stress_test_webdav_service(&config)?;
// Pre-flight connectivity check - fail fast if server is not reachable
info!("🔍 Performing pre-flight connectivity check...");
match timeout(
Duration::from_secs(10),
webdav_service.discover_files("/", false)
).await {
Ok(Ok(_)) => {
info!("✅ Pre-flight check passed - WebDAV server is reachable");
}
Ok(Err(e)) => {
error!("❌ Pre-flight check FAILED - WebDAV server is not reachable: {}", e);
if let Some(mut server) = mock_server {
server.stop().await;
}
return Err(anyhow!(
"Pre-flight connectivity check failed - WebDAV server at {} is not responding: {}",
config.webdav_server_url, e
));
}
Err(_) => {
error!("❌ Pre-flight check TIMED OUT - WebDAV server is not responding");
if let Some(mut server) = mock_server {
server.stop().await;
}
return Err(anyhow!(
"Pre-flight connectivity check timed out - WebDAV server at {} is not responding within 10 seconds",
config.webdav_server_url
));
}
}
// Test various edge cases that might cause infinite loops or crashes
let edge_case_paths = vec![
"/symlink-test", // Symbolic links
"/unicode-test", // Unicode filenames
"/problematic-files", // Files with problematic names
"/restricted-access", // Permission issues
"/nonexistent-directory", // 404 errors
"/.git", // Git directories (if they exist)
"/large-directory", // Large number of files
];
let mut test_results = HashMap::new();
for path in edge_case_paths {
info!("Testing edge case: {}", path);
let start_time = Instant::now();
let result = timeout(
Duration::from_secs(30), // 30 second timeout per edge case
webdav_service.discover_files_and_directories(path, false)
).await;
let test_result = match result {
Ok(Ok(discovery)) => {
let duration = start_time.elapsed();
info!("✅ Edge case {} handled successfully: {} files, {} dirs in {:.2}s",
path, discovery.files.len(), discovery.directories.len(), duration.as_secs_f64());
EdgeCaseTestResult::Success {
files_found: discovery.files.len(),
directories_found: discovery.directories.len(),
duration_ms: duration.as_millis() as u64,
}
},
Ok(Err(e)) => {
let duration = start_time.elapsed();
warn!("⚠️ Edge case {} failed gracefully: {} (in {:.2}s)", path, e, duration.as_secs_f64());
EdgeCaseTestResult::ExpectedFailure {
error_message: e.to_string(),
duration_ms: duration.as_millis() as u64,
}
},
Err(_) => {
error!("❌ Edge case {} timed out after 30s - possible infinite loop!", path);
EdgeCaseTestResult::Timeout
}
};
test_results.insert(path.to_string(), test_result);
}
// Analyze results
let mut successful = 0;
let mut expected_failures = 0;
let mut timeouts = 0;
for (path, result) in &test_results {
match result {
EdgeCaseTestResult::Success { .. } => successful += 1,
EdgeCaseTestResult::ExpectedFailure { .. } => expected_failures += 1,
EdgeCaseTestResult::Timeout => {
timeouts += 1;
error!("CRITICAL: Timeout detected for path: {}", path);
}
}
}
info!("Edge case test summary:");
info!(" - Successful: {}", successful);
info!(" - Expected failures: {}", expected_failures);
info!(" - Timeouts: {}", timeouts);
// Clean up mock server if we started one
if let Some(mut server) = mock_server {
server.stop().await;
}
// Test passes if no timeouts occurred (timeouts suggest infinite loops)
if timeouts == 0 {
info!("✅ Edge case handling test passed - no infinite loops detected");
Ok(())
} else {
error!("❌ Edge case handling test failed - {} timeouts detected (possible infinite loops)", timeouts);
Err(anyhow!("Edge case handling test failed with {} timeouts", timeouts))
}
}
#[derive(Debug)]
enum EdgeCaseTestResult {
Success {
files_found: usize,
directories_found: usize,
duration_ms: u64,
},
ExpectedFailure {
error_message: String,
duration_ms: u64,
},
Timeout,
}
/// Classify WebDAV errors for metrics
fn classify_webdav_error(error: &anyhow::Error) -> String {
let error_str = error.to_string().to_lowercase();
if error_str.contains("timeout") || error_str.contains("timed out") {
"timeout".to_string()
} else if error_str.contains("404") || error_str.contains("not found") {
"not_found".to_string()
} else if error_str.contains("403") || error_str.contains("forbidden") || error_str.contains("permission") {
"permission_denied".to_string()
} else if error_str.contains("500") || error_str.contains("internal server error") {
"server_error".to_string()
} else if error_str.contains("connection") || error_str.contains("network") {
"network_error".to_string()
} else if error_str.contains("parse") || error_str.contains("invalid") {
"parsing_error".to_string()
} else {
"unknown_error".to_string()
}
}
// Helper to ensure tests only run with stress-testing feature
#[cfg(not(feature = "stress-testing"))]
mod stress_tests_disabled {
#[test]
fn stress_testing_feature_required() {
println!("WebDAV stress tests are disabled. Enable with: cargo test --features stress-testing");
}
}
#[cfg(feature = "stress-testing")]
#[tokio::test]
async fn test_cleanup_and_reporting() -> Result<()> {
init_tracing();
// This test runs at the end to generate final reports
info!("Generating final stress test report...");
// In a real implementation, this would:
// 1. Collect all metrics from previous tests
// 2. Generate a comprehensive report
// 3. Output results in various formats (JSON, GitHub Actions summary, etc.)
// 4. Clean up any test artifacts
let report = StressTestReport {
test_suite_version: env!("CARGO_PKG_VERSION").to_string(),
test_timestamp: chrono::Utc::now(),
overall_result: "PASSED".to_string(), // Would be calculated based on actual results
test_summary: TestSummary {
total_tests: 4,
passed_tests: 4,
failed_tests: 0,
skipped_tests: 0,
},
recommendations: vec![
"WebDAV sync appears to be functioning correctly under stress conditions".to_string(),
"No infinite loop patterns detected in current test scenarios".to_string(),
"Consider running more intensive stress tests in staging environment".to_string(),
],
};
// Write report to file for CI/CD pipeline consumption
let report_json = serde_json::to_string_pretty(&report)?;
std::fs::write("stress-test-metrics.json", report_json)?;
info!("✅ Stress test report generated: stress-test-metrics.json");
Ok(())
}
#[derive(Debug, Serialize)]
struct StressTestReport {
test_suite_version: String,
test_timestamp: chrono::DateTime<chrono::Utc>,
overall_result: String,
test_summary: TestSummary,
recommendations: Vec<String>,
}
#[derive(Debug, Serialize)]
struct TestSummary {
total_tests: usize,
passed_tests: usize,
failed_tests: usize,
skipped_tests: usize,
}