removed roll and added Kalman auto tuning

This commit is contained in:
ck-zhang
2024-10-18 10:47:57 +08:00
parent 8485801cb3
commit 67d6317a45
2 changed files with 132 additions and 14 deletions

140
demo.py
View File

@@ -135,13 +135,141 @@ def run_calibration(gaze_estimator, camera_index=0):
gaze_estimator.train(X, y)
def fine_tune_kalman_filter(gaze_estimator, kalman, camera_index=0):
root = tk.Tk()
screen_width = root.winfo_screenwidth()
screen_height = root.winfo_screenheight()
root.destroy()
initial_points = [
{
"position": (screen_width // 2, screen_height // 4),
"start_time": None,
"collected_gaze": [],
},
{
"position": (screen_width // 4, 3 * screen_height // 4),
"start_time": None,
"collected_gaze": [],
},
{
"position": (3 * screen_width // 4, 3 * screen_height // 4),
"start_time": None,
"collected_gaze": [],
},
]
points = initial_points.copy()
proximity_threshold = screen_width / 5 # pixels
dot_duration = 3 # seconds
cv2.namedWindow("Fine Tuning", cv2.WND_PROP_FULLSCREEN)
cv2.setWindowProperty("Fine Tuning", cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)
cap = cv2.VideoCapture(camera_index)
gaze_positions = []
while len(points) > 0:
ret, frame = cap.read()
if not ret:
continue
features, blink_detected = gaze_estimator.extract_features(frame)
canvas = np.zeros((screen_height, screen_width, 3), dtype=np.uint8)
for point in points:
cv2.circle(canvas, point["position"], 20, (0, 255, 0), -1)
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1.5
color = (255, 255, 255)
thickness = 2
text = "Look at the points until they disappear"
text_size, _ = cv2.getTextSize(text, font, font_scale, thickness)
text_x = (screen_width - text_size[0]) // 2
text_y = screen_height - 50
cv2.putText(canvas, text, (text_x, text_y), font, font_scale, color, thickness)
if features is not None and not blink_detected:
X = np.array([features])
gaze_point = gaze_estimator.predict(X)[0]
gaze_x, gaze_y = int(gaze_point[0]), int(gaze_point[1])
cv2.circle(canvas, (gaze_x, gaze_y), 10, (255, 0, 0), -1)
for point in points[:]:
dx = gaze_x - point["position"][0]
dy = gaze_y - point["position"][1]
distance = np.sqrt(dx * dx + dy * dy)
if distance <= proximity_threshold:
if point["start_time"] is None:
point["start_time"] = time.time()
point["collected_gaze"] = []
elapsed_time = time.time() - point["start_time"]
point["collected_gaze"].append([gaze_x, gaze_y])
shake_amplitude = int(5 + (elapsed_time / dot_duration) * 20)
shake_x = int(np.random.uniform(-shake_amplitude, shake_amplitude))
shake_y = int(np.random.uniform(-shake_amplitude, shake_amplitude))
shaken_position = (
int(point["position"][0] + shake_x),
int(point["position"][1] + shake_y),
)
cv2.circle(canvas, shaken_position, 20, (0, 255, 0), -1)
if elapsed_time >= dot_duration:
gaze_positions.extend(point["collected_gaze"])
points.remove(point)
else:
point["start_time"] = None
point["collected_gaze"] = []
else:
for point in points:
point["start_time"] = None
point["collected_gaze"] = []
cv2.imshow("Fine Tuning", canvas)
if cv2.waitKey(1) == 27:
cap.release()
cv2.destroyWindow("Fine Tuning")
return
cap.release()
cv2.destroyWindow("Fine Tuning")
gaze_positions = np.array(gaze_positions)
if gaze_positions.shape[0] < 2:
return
gaze_variance = np.var(gaze_positions, axis=0)
gaze_variance[gaze_variance == 0] = 1e-4
kalman.measurementNoiseCov = np.array(
[[gaze_variance[0], 0], [0, gaze_variance[1]]], dtype=np.float32
)
def main():
camera_index = 1
camera_index = 0
gaze_estimator = GazeEstimator()
run_calibration(gaze_estimator, camera_index=camera_index)
kalman = cv2.KalmanFilter(4, 2)
kalman.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)
kalman.transitionMatrix = np.array(
[[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32
)
kalman.processNoiseCov = np.eye(4, dtype=np.float32) * 1
kalman.measurementNoiseCov = np.eye(2, dtype=np.float32) * 1
kalman.statePre = np.zeros((4, 1), np.float32)
kalman.statePost = np.zeros((4, 1), np.float32)
fine_tune_kalman_filter(gaze_estimator, kalman, camera_index=camera_index)
root = tk.Tk()
screen_width = root.winfo_screenwidth()
screen_height = root.winfo_screenheight()
@@ -157,16 +285,6 @@ def main():
cap = cv2.VideoCapture(camera_index)
prev_time = time.time()
kalman = cv2.KalmanFilter(4, 2)
kalman.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)
kalman.transitionMatrix = np.array(
[[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32
)
kalman.processNoiseCov = np.eye(4, dtype=np.float32) * 0.0005
kalman.measurementNoiseCov = np.eye(2, dtype=np.float32) * 1
kalman.statePre = np.zeros((4, 1), np.float32)
kalman.statePost = np.zeros((4, 1), np.float32)
while True:
ret, frame = cap.read()
if not ret:

View File

@@ -62,9 +62,9 @@ class GazeEstimator:
right_eye_bottom,
)
yaw, pitch, roll = self._calculate_head_orientation(landmarks)
yaw, pitch = self._calculate_head_orientation(landmarks)
features = np.hstack([left_pupil_rel, right_pupil_rel, [yaw, pitch, roll]])
features = np.hstack([left_pupil_rel, right_pupil_rel, [yaw, pitch]])
# Blink detection
left_eye_width = np.linalg.norm(left_eye_outer - left_eye_inner)
@@ -120,7 +120,7 @@ class GazeEstimator:
eye_line_vector = right_eye_outer - left_eye_outer
roll = np.arctan2(eye_line_vector[1], eye_line_vector[0])
return yaw, pitch, roll
return yaw, pitch
def train(self, X, y, alpha=1.0, variable_scaling=None):
"""