Polished demo

This commit is contained in:
ck-zhang
2024-11-03 14:46:16 +08:00
parent c1576c699d
commit e2c0dc7050

338
demo.py
View File

@@ -2,7 +2,10 @@ import cv2
import numpy as np
import tkinter as tk
import time
import argparse
from gaze_estimator import GazeEstimator
from scipy.stats import gaussian_kde
import os
def run_calibration(gaze_estimator, camera_index=0):
@@ -11,18 +14,16 @@ def run_calibration(gaze_estimator, camera_index=0):
screen_height = root.winfo_screenheight()
root.destroy()
points = [
(screen_width / 2, screen_height / 2), # Middle
(50, 50), # Top left
(screen_width - 50, 50), # Top right
(50, screen_height - 50), # Bottom left
(screen_width - 50, screen_height - 50), # Bottom right
(50, 50), # Top left
(50, screen_height - 50), # Bottom left
(screen_width - 50, 50), # Top right
(screen_width - 50, screen_height - 50), # Bottom right
(screen_width / 2, screen_height / 2), # Middle
]
# Parameters for Lissajous curve
A = screen_width * 0.4 # Amplitude in x-direction
B = screen_height * 0.4 # Amplitude in y-direction
a = 3 # Frequency in x-direction
b = 2 # Frequency in y-direction
delta = 0 # Phase shift adjusted to start at the center
total_time = 5 # Total duration of the calibration in seconds
fps = 60 # Frames per second
total_frames = int(total_time * fps)
cv2.namedWindow("Calibration", cv2.WND_PROP_FULLSCREEN)
cv2.setWindowProperty("Calibration", cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)
@@ -32,10 +33,10 @@ def run_calibration(gaze_estimator, camera_index=0):
features_list = []
targets_list = []
N = 30 # Frames per movement
def ease_in_out_quad(t):
return t * t * (3 - 2 * t)
def lissajous_curve(t, A, B, a, b, delta):
x = A * np.sin(a * t + delta) + screen_width / 2
y = B * np.sin(b * t) + screen_height / 2
return x, y
face_detected = False
countdown_active = False
@@ -100,31 +101,26 @@ def run_calibration(gaze_estimator, camera_index=0):
cv2.destroyWindow("Calibration")
return
for i in range(len(points) - 1):
p0 = points[i]
p1 = points[i + 1]
start_time = time.time()
for frame_idx in range(total_frames):
ret, frame = cap.read()
if not ret:
continue
for frame_idx in range(N):
ret, frame = cap.read()
if not ret:
continue
t = (time.time() - start_time) * (2 * np.pi / total_time)
x, y = lissajous_curve(t, A, B, a, b, delta)
x, y = int(x), int(y)
t = frame_idx / (N - 1)
eased_t = ease_in_out_quad(t)
canvas = np.zeros((screen_height, screen_width, 3), dtype=np.uint8)
cv2.circle(canvas, (x, y), 20, (0, 255, 0), -1)
x = int(p0[0] + (p1[0] - p0[0]) * eased_t)
y = int(p0[1] + (p1[1] - p0[1]) * eased_t)
cv2.imshow("Calibration", canvas)
cv2.waitKey(1)
canvas = np.zeros((screen_height, screen_width, 3), dtype=np.uint8)
cv2.circle(canvas, (x, y), 20, (0, 255, 0), -1)
cv2.imshow("Calibration", canvas)
cv2.waitKey(1)
features, blink_detected = gaze_estimator.extract_features(frame)
if features is not None and not blink_detected:
features_list.append(features)
targets_list.append([x, y])
features, blink_detected = gaze_estimator.extract_features(frame)
if features is not None and not blink_detected:
features_list.append(features)
targets_list.append([x, y])
cap.release()
cv2.destroyWindow("Calibration")
@@ -145,16 +141,22 @@ def fine_tune_kalman_filter(gaze_estimator, kalman, camera_index=0):
{
"position": (screen_width // 2, screen_height // 4),
"start_time": None,
"data_collection_started": False,
"collection_start_time": None,
"collected_gaze": [],
},
{
"position": (screen_width // 4, 3 * screen_height // 4),
"start_time": None,
"data_collection_started": False,
"collection_start_time": None,
"collected_gaze": [],
},
{
"position": (3 * screen_width // 4, 3 * screen_height // 4),
"start_time": None,
"data_collection_started": False,
"collection_start_time": None,
"collected_gaze": [],
},
]
@@ -162,7 +164,8 @@ def fine_tune_kalman_filter(gaze_estimator, kalman, camera_index=0):
points = initial_points.copy()
proximity_threshold = screen_width / 5 # pixels
dot_duration = 3 # seconds
initial_delay = 0.5 # seconds before starting data collection
data_collection_duration = 0.5 # seconds of valid data collection
cv2.namedWindow("Fine Tuning", cv2.WND_PROP_FULLSCREEN)
cv2.setWindowProperty("Fine Tuning", cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)
@@ -192,6 +195,8 @@ def fine_tune_kalman_filter(gaze_estimator, kalman, camera_index=0):
text_y = screen_height - 50
cv2.putText(canvas, text, (text_x, text_y), font, font_scale, color, thickness)
current_time = time.time()
if features is not None and not blink_detected:
X = np.array([features])
gaze_point = gaze_estimator.predict(X)[0]
@@ -205,29 +210,57 @@ def fine_tune_kalman_filter(gaze_estimator, kalman, camera_index=0):
distance = np.sqrt(dx * dx + dy * dy)
if distance <= proximity_threshold:
if point["start_time"] is None:
point["start_time"] = time.time()
point["start_time"] = current_time
point["data_collection_started"] = False
point["collection_start_time"] = None
point["collected_gaze"] = []
elapsed_time = time.time() - point["start_time"]
point["collected_gaze"].append([gaze_x, gaze_y])
elapsed_time = current_time - point["start_time"]
shake_amplitude = int(5 + (elapsed_time / dot_duration) * 20)
shake_x = int(np.random.uniform(-shake_amplitude, shake_amplitude))
shake_y = int(np.random.uniform(-shake_amplitude, shake_amplitude))
shaken_position = (
int(point["position"][0] + shake_x),
int(point["position"][1] + shake_y),
)
cv2.circle(canvas, shaken_position, 20, (0, 255, 0), -1)
if (
not point["data_collection_started"]
and elapsed_time >= initial_delay
):
point["data_collection_started"] = True
point["collection_start_time"] = current_time
point["collected_gaze"] = []
if elapsed_time >= dot_duration:
gaze_positions.extend(point["collected_gaze"])
points.remove(point)
if point["data_collection_started"]:
data_collection_elapsed = (
current_time - point["collection_start_time"]
)
point["collected_gaze"].append([gaze_x, gaze_y])
shake_amplitude = int(
5
+ (data_collection_elapsed / data_collection_duration) * 20
)
shake_x = int(
np.random.uniform(-shake_amplitude, shake_amplitude)
)
shake_y = int(
np.random.uniform(-shake_amplitude, shake_amplitude)
)
shaken_position = (
int(point["position"][0] + shake_x),
int(point["position"][1] + shake_y),
)
cv2.circle(canvas, shaken_position, 20, (0, 255, 0), -1)
if data_collection_elapsed >= data_collection_duration:
gaze_positions.extend(point["collected_gaze"])
points.remove(point)
else:
cv2.circle(canvas, point["position"], 25, (0, 255, 255), 2)
else:
point["start_time"] = None
point["data_collection_started"] = False
point["collection_start_time"] = None
point["collected_gaze"] = []
else:
for point in points:
point["start_time"] = None
point["data_collection_started"] = False
point["collection_start_time"] = None
point["collected_gaze"] = []
cv2.imshow("Fine Tuning", canvas)
@@ -252,30 +285,62 @@ def fine_tune_kalman_filter(gaze_estimator, kalman, camera_index=0):
def main():
camera_index = 0
parser = argparse.ArgumentParser(
description="Gaze Estimation with Kalman Filter or KDE"
)
parser.add_argument(
"--filter",
choices=["kalman", "kde"],
default="kalman",
help="Filter method: kalman or kde",
)
parser.add_argument("--camera", type=int, default=0, help="Camera index")
parser.add_argument(
"--background", type=str, default=None, help="Path to background image"
)
parser.add_argument(
"--confidence",
type=float,
default=0.5,
help="Confidence interval for KDE contour (0 < value < 1)",
)
args = parser.parse_args()
filter_method = args.filter
camera_index = args.camera
background_path = args.background
confidence_level = args.confidence
gaze_estimator = GazeEstimator()
run_calibration(gaze_estimator, camera_index=camera_index)
kalman = cv2.KalmanFilter(4, 2)
kalman.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)
kalman.transitionMatrix = np.array(
[[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32
)
kalman.processNoiseCov = np.eye(4, dtype=np.float32) * 1
kalman.measurementNoiseCov = np.eye(2, dtype=np.float32) * 1
kalman.statePre = np.zeros((4, 1), np.float32)
kalman.statePost = np.zeros((4, 1), np.float32)
if filter_method == "kalman":
kalman = cv2.KalmanFilter(4, 2)
kalman.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)
kalman.transitionMatrix = np.array(
[[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32
)
kalman.processNoiseCov = np.eye(4, dtype=np.float32) * 1
kalman.measurementNoiseCov = np.eye(2, dtype=np.float32) * 1
kalman.statePre = np.zeros((4, 1), np.float32)
kalman.statePost = np.zeros((4, 1), np.float32)
fine_tune_kalman_filter(gaze_estimator, kalman, camera_index=camera_index)
fine_tune_kalman_filter(gaze_estimator, kalman, camera_index=camera_index)
root = tk.Tk()
screen_width = root.winfo_screenwidth()
screen_height = root.winfo_screenheight()
root.destroy()
cam_width, cam_height = 480, 360
cam_width, cam_height = 320, 240
if background_path and os.path.isfile(background_path):
background = cv2.imread(background_path)
background = cv2.resize(background, (screen_width, screen_height))
else:
background = np.zeros((screen_height, screen_width, 3), dtype=np.uint8)
background[:] = (50, 50, 50)
cv2.namedWindow("Gaze Estimation", cv2.WND_PROP_FULLSCREEN)
cv2.setWindowProperty(
@@ -285,6 +350,14 @@ def main():
cap = cv2.VideoCapture(camera_index)
prev_time = time.time()
if filter_method == "kde":
gaze_history = []
time_window = 0.5 # seconds
# Variables for gaze cursor fade effect
cursor_alpha = 0.0
cursor_alpha_step = 0.05
while True:
ret, frame = cap.read()
if not ret:
@@ -296,50 +369,143 @@ def main():
gaze_point = gaze_estimator.predict(X)[0]
x, y = int(gaze_point[0]), int(gaze_point[1])
prediction = kalman.predict()
x_pred, y_pred = int(prediction[0]), int(prediction[1])
if filter_method == "kalman":
prediction = kalman.predict()
x_pred, y_pred = int(prediction[0]), int(prediction[1])
measurement = np.array([[np.float32(x)], [np.float32(y)]])
if np.count_nonzero(kalman.statePre) == 0:
kalman.statePre[:2] = measurement
kalman.statePost[:2] = measurement
kalman.correct(measurement)
# Clamp the predicted gaze point to the screen boundaries
x_pred = max(0, min(x_pred, screen_width - 1))
y_pred = max(0, min(y_pred, screen_height - 1))
measurement = np.array([[np.float32(x)], [np.float32(y)]])
if np.count_nonzero(kalman.statePre) == 0:
kalman.statePre[:2] = measurement
kalman.statePost[:2] = measurement
kalman.correct(measurement)
elif filter_method == "kde":
current_time = time.time()
gaze_history.append((current_time, x, y))
# Remove old entries
gaze_history = [
(t, gx, gy)
for (t, gx, gy) in gaze_history
if current_time - t <= time_window
]
if len(gaze_history) > 1:
gaze_array = np.array([(gx, gy) for (t, gx, gy) in gaze_history])
# Check for singular covariance
try:
kde = gaussian_kde(gaze_array.T)
# Compute densities on a grid for visualization
xi, yi = np.mgrid[0:screen_width:320j, 0:screen_height:200j]
coords = np.vstack([xi.ravel(), yi.ravel()])
zi = kde(coords).reshape(xi.shape).T
# Find the contour level for the desired confidence interval
levels = np.linspace(zi.min(), zi.max(), 100)
zi_flat = zi.flatten()
sorted_indices = np.argsort(zi_flat)[::-1]
zi_sorted = zi_flat[sorted_indices]
cumsum = np.cumsum(zi_sorted)
cumsum /= cumsum[-1] # Normalize to get CDF
# Find the density threshold corresponding to the confidence level
idx = np.searchsorted(cumsum, confidence_level)
if idx >= len(zi_sorted):
idx = len(zi_sorted) - 1
threshold = zi_sorted[idx]
# Create a binary mask where densities are above the threshold
mask = np.where(zi >= threshold, 1, 0).astype(np.uint8)
# Resize mask to screen dimensions
mask_resized = cv2.resize(mask, (screen_width, screen_height))
# Find contours in the binary mask
contours, _ = cv2.findContours(
mask_resized, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
x_pred = int(np.mean(gaze_array[:, 0]))
y_pred = int(np.mean(gaze_array[:, 1]))
except np.linalg.LinAlgError:
x_pred = int(np.mean(gaze_array[:, 0]))
y_pred = int(np.mean(gaze_array[:, 1]))
contours = []
else:
x_pred, y_pred = x, y
contours = []
# Increase cursor alpha for fade-in effect
cursor_alpha = min(cursor_alpha + cursor_alpha_step, 1.0)
else:
x_pred, y_pred = None, None
blink_detected = True
contours = []
# Decrease cursor alpha for fade-out effect
cursor_alpha = max(cursor_alpha - cursor_alpha_step, 0.0)
canvas = background.copy()
if filter_method == "kde" and contours:
cv2.drawContours(canvas, contours, -1, (15, 182, 242), thickness=5)
# Draw the gaze cursor with fade effect
if x_pred is not None and y_pred is not None and cursor_alpha > 0:
overlay = canvas.copy()
cv2.circle(overlay, (x_pred, y_pred), 30, (0, 0, 255), -1)
cv2.circle(overlay, (x_pred, y_pred), 25, (255, 255, 255), -1)
cv2.addWeighted(
overlay, cursor_alpha * 0.6, canvas, 1 - cursor_alpha * 0.6, 0, canvas
)
# Draw the camera feed
small_frame = cv2.resize(frame, (cam_width, cam_height))
frame_border = cv2.copyMakeBorder(
small_frame, 2, 2, 2, 2, cv2.BORDER_CONSTANT, value=(255, 255, 255)
)
x_offset = screen_width - cam_width - 20
y_offset = screen_height - cam_height - 20
canvas[
y_offset : y_offset + cam_height + 4, x_offset : x_offset + cam_width + 4
] = frame_border
canvas = np.zeros((screen_height, screen_width, 3), dtype=np.uint8)
canvas[:cam_height, :cam_width] = small_frame
if x_pred is not None and y_pred is not None:
cv2.circle(canvas, (x_pred, y_pred), 20, (0, 0, 255), -1)
# FPS and blink indicator
current_time = time.time()
fps = 1 / (current_time - prev_time)
prev_time = current_time
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1.2
font_color = (255, 255, 255)
font_thickness = 2
cv2.putText(
canvas,
f"FPS: {int(fps)}",
(50, 50),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(255, 255, 255),
2,
font,
font_scale,
font_color,
font_thickness,
lineType=cv2.LINE_AA,
)
blink_text = "Blinking" if blink_detected else "Not Blinking"
blink_color = (0, 0, 255) if blink_detected else (0, 255, 0)
cv2.putText(
canvas,
blink_text,
(50, 100),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 255, 0) if not blink_detected else (0, 0, 255),
2,
font,
font_scale,
blink_color,
font_thickness,
lineType=cv2.LINE_AA,
)
cv2.imshow("Gaze Estimation", canvas)