mirror of
https://github.com/mudler/LocalAI.git
synced 2025-12-30 14:10:24 -06:00
chore(ci): fix gallery agent linting issues
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
25
.github/gallery-agent/gallery.go
vendored
25
.github/gallery-agent/gallery.go
vendored
@@ -43,7 +43,18 @@ func generateYAMLEntry(model ProcessedModel, familyAnchor string) string {
|
||||
description = cleanTextContent(description)
|
||||
|
||||
// Format description for YAML (indent each line and ensure no trailing spaces)
|
||||
formattedDescription := strings.ReplaceAll(description, "\n", "\n ")
|
||||
lines := strings.Split(description, "\n")
|
||||
var formattedLines []string
|
||||
for _, line := range lines {
|
||||
if strings.TrimSpace(line) == "" {
|
||||
// Keep empty lines as empty (no indentation)
|
||||
formattedLines = append(formattedLines, "")
|
||||
} else {
|
||||
// Add indentation to non-empty lines
|
||||
formattedLines = append(formattedLines, " "+line)
|
||||
}
|
||||
}
|
||||
formattedDescription := strings.Join(formattedLines, "\n")
|
||||
// Remove any trailing spaces from the formatted description
|
||||
formattedDescription = strings.TrimRight(formattedDescription, " \t")
|
||||
yamlTemplate := ""
|
||||
@@ -53,15 +64,14 @@ func generateYAMLEntry(model ProcessedModel, familyAnchor string) string {
|
||||
urls:
|
||||
- https://huggingface.co/%s
|
||||
description: |
|
||||
%s
|
||||
%s
|
||||
overrides:
|
||||
parameters:
|
||||
model: %s
|
||||
files:
|
||||
- filename: %s
|
||||
sha256: %s
|
||||
uri: huggingface://%s/%s
|
||||
`
|
||||
uri: huggingface://%s/%s`
|
||||
return fmt.Sprintf(yamlTemplate,
|
||||
familyAnchor,
|
||||
modelName,
|
||||
@@ -79,11 +89,10 @@ func generateYAMLEntry(model ProcessedModel, familyAnchor string) string {
|
||||
urls:
|
||||
- https://huggingface.co/%s
|
||||
description: |
|
||||
%s
|
||||
%s
|
||||
overrides:
|
||||
parameters:
|
||||
model: %s
|
||||
`
|
||||
model: %s`
|
||||
return fmt.Sprintf(yamlTemplate,
|
||||
familyAnchor,
|
||||
modelName,
|
||||
@@ -179,7 +188,7 @@ func generateYAMLForModels(ctx context.Context, models []ProcessedModel) error {
|
||||
// Remove trailing whitespace from existing content and join entries without extra newlines
|
||||
existingContent := strings.TrimRight(string(content), " \t\n\r")
|
||||
yamlBlock := strings.Join(yamlEntries, "\n")
|
||||
newContent := existingContent + "\n" + yamlBlock
|
||||
newContent := existingContent + "\n" + yamlBlock + "\n"
|
||||
|
||||
// Write back to file
|
||||
err = os.WriteFile(indexPath, []byte(newContent), 0644)
|
||||
|
||||
1
.github/gallery-agent/go.mod
vendored
1
.github/gallery-agent/go.mod
vendored
@@ -8,6 +8,7 @@ require (
|
||||
github.com/onsi/gomega v1.38.2
|
||||
github.com/sashabaranov/go-openai v1.41.2
|
||||
github.com/tmc/langchaingo v0.1.13
|
||||
gopkg.in/yaml.v3 v3.0.1
|
||||
)
|
||||
|
||||
require (
|
||||
|
||||
12
.github/gallery-agent/main.go
vendored
12
.github/gallery-agent/main.go
vendored
@@ -45,6 +45,18 @@ type SearchResult struct {
|
||||
}
|
||||
|
||||
func main() {
|
||||
// Check for synthetic mode
|
||||
syntheticMode := os.Getenv("SYNTHETIC_MODE")
|
||||
if syntheticMode == "true" || syntheticMode == "1" {
|
||||
fmt.Println("Running in SYNTHETIC MODE - generating random test data")
|
||||
err := runSyntheticMode()
|
||||
if err != nil {
|
||||
fmt.Fprintf(os.Stderr, "Error in synthetic mode: %v\n", err)
|
||||
os.Exit(1)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Get configuration from environment variables
|
||||
searchTerm := os.Getenv("SEARCH_TERM")
|
||||
if searchTerm == "" {
|
||||
|
||||
190
.github/gallery-agent/testing.go
vendored
Normal file
190
.github/gallery-agent/testing.go
vendored
Normal file
@@ -0,0 +1,190 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"math/rand"
|
||||
"strings"
|
||||
"time"
|
||||
)
|
||||
|
||||
// runSyntheticMode generates synthetic test data and appends it to the gallery
|
||||
func runSyntheticMode() error {
|
||||
generator := NewSyntheticDataGenerator()
|
||||
|
||||
// Generate a random number of synthetic models (1-3)
|
||||
numModels := generator.rand.Intn(3) + 1
|
||||
fmt.Printf("Generating %d synthetic models for testing...\n", numModels)
|
||||
|
||||
var models []ProcessedModel
|
||||
for i := 0; i < numModels; i++ {
|
||||
model := generator.GenerateProcessedModel()
|
||||
models = append(models, model)
|
||||
fmt.Printf("Generated synthetic model: %s\n", model.ModelID)
|
||||
}
|
||||
|
||||
// Generate YAML entries and append to gallery/index.yaml
|
||||
fmt.Println("Generating YAML entries for synthetic models...")
|
||||
err := generateYAMLForModels(context.Background(), models)
|
||||
if err != nil {
|
||||
return fmt.Errorf("error generating YAML entries: %w", err)
|
||||
}
|
||||
|
||||
fmt.Printf("Successfully added %d synthetic models to the gallery for testing!\n", len(models))
|
||||
return nil
|
||||
}
|
||||
|
||||
// SyntheticDataGenerator provides methods to generate synthetic test data
|
||||
type SyntheticDataGenerator struct {
|
||||
rand *rand.Rand
|
||||
}
|
||||
|
||||
// NewSyntheticDataGenerator creates a new synthetic data generator
|
||||
func NewSyntheticDataGenerator() *SyntheticDataGenerator {
|
||||
return &SyntheticDataGenerator{
|
||||
rand: rand.New(rand.NewSource(time.Now().UnixNano())),
|
||||
}
|
||||
}
|
||||
|
||||
// GenerateProcessedModelFile creates a synthetic ProcessedModelFile
|
||||
func (g *SyntheticDataGenerator) GenerateProcessedModelFile() ProcessedModelFile {
|
||||
fileTypes := []string{"model", "readme", "other"}
|
||||
fileType := fileTypes[g.rand.Intn(len(fileTypes))]
|
||||
|
||||
var path string
|
||||
var isReadme bool
|
||||
|
||||
switch fileType {
|
||||
case "model":
|
||||
path = fmt.Sprintf("model-%s.gguf", g.randomString(8))
|
||||
isReadme = false
|
||||
case "readme":
|
||||
path = "README.md"
|
||||
isReadme = true
|
||||
default:
|
||||
path = fmt.Sprintf("file-%s.txt", g.randomString(6))
|
||||
isReadme = false
|
||||
}
|
||||
|
||||
return ProcessedModelFile{
|
||||
Path: path,
|
||||
Size: int64(g.rand.Intn(1000000000) + 1000000), // 1MB to 1GB
|
||||
SHA256: g.randomSHA256(),
|
||||
IsReadme: isReadme,
|
||||
FileType: fileType,
|
||||
}
|
||||
}
|
||||
|
||||
// GenerateProcessedModel creates a synthetic ProcessedModel
|
||||
func (g *SyntheticDataGenerator) GenerateProcessedModel() ProcessedModel {
|
||||
authors := []string{"microsoft", "meta", "google", "openai", "anthropic", "mistralai", "huggingface"}
|
||||
modelNames := []string{"llama", "gpt", "claude", "mistral", "gemma", "phi", "qwen", "codellama"}
|
||||
|
||||
author := authors[g.rand.Intn(len(authors))]
|
||||
modelName := modelNames[g.rand.Intn(len(modelNames))]
|
||||
modelID := fmt.Sprintf("%s/%s-%s", author, modelName, g.randomString(6))
|
||||
|
||||
// Generate files
|
||||
numFiles := g.rand.Intn(5) + 2 // 2-6 files
|
||||
files := make([]ProcessedModelFile, numFiles)
|
||||
|
||||
// Ensure at least one model file and one readme
|
||||
hasModelFile := false
|
||||
hasReadme := false
|
||||
|
||||
for i := 0; i < numFiles; i++ {
|
||||
files[i] = g.GenerateProcessedModelFile()
|
||||
if files[i].FileType == "model" {
|
||||
hasModelFile = true
|
||||
}
|
||||
if files[i].FileType == "readme" {
|
||||
hasReadme = true
|
||||
}
|
||||
}
|
||||
|
||||
// Add required files if missing
|
||||
if !hasModelFile {
|
||||
modelFile := g.GenerateProcessedModelFile()
|
||||
modelFile.FileType = "model"
|
||||
modelFile.Path = fmt.Sprintf("%s-Q4_K_M.gguf", modelName)
|
||||
files = append(files, modelFile)
|
||||
}
|
||||
|
||||
if !hasReadme {
|
||||
readmeFile := g.GenerateProcessedModelFile()
|
||||
readmeFile.FileType = "readme"
|
||||
readmeFile.Path = "README.md"
|
||||
readmeFile.IsReadme = true
|
||||
files = append(files, readmeFile)
|
||||
}
|
||||
|
||||
// Find preferred model file
|
||||
var preferredModelFile *ProcessedModelFile
|
||||
for i := range files {
|
||||
if files[i].FileType == "model" {
|
||||
preferredModelFile = &files[i]
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
// Find readme file
|
||||
var readmeFile *ProcessedModelFile
|
||||
for i := range files {
|
||||
if files[i].FileType == "readme" {
|
||||
readmeFile = &files[i]
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
readmeContent := g.generateReadmeContent(modelName, author)
|
||||
|
||||
return ProcessedModel{
|
||||
ModelID: modelID,
|
||||
Author: author,
|
||||
Downloads: g.rand.Intn(1000000) + 1000,
|
||||
LastModified: g.randomDate(),
|
||||
Files: files,
|
||||
PreferredModelFile: preferredModelFile,
|
||||
ReadmeFile: readmeFile,
|
||||
ReadmeContent: readmeContent,
|
||||
ReadmeContentPreview: truncateString(readmeContent, 200),
|
||||
QuantizationPreferences: []string{"Q4_K_M", "Q4_K_S", "Q3_K_M", "Q2_K"},
|
||||
ProcessingError: "",
|
||||
}
|
||||
}
|
||||
|
||||
// Helper methods for synthetic data generation
|
||||
func (g *SyntheticDataGenerator) randomString(length int) string {
|
||||
const charset = "abcdefghijklmnopqrstuvwxyz0123456789"
|
||||
b := make([]byte, length)
|
||||
for i := range b {
|
||||
b[i] = charset[g.rand.Intn(len(charset))]
|
||||
}
|
||||
return string(b)
|
||||
}
|
||||
|
||||
func (g *SyntheticDataGenerator) randomSHA256() string {
|
||||
const charset = "0123456789abcdef"
|
||||
b := make([]byte, 64)
|
||||
for i := range b {
|
||||
b[i] = charset[g.rand.Intn(len(charset))]
|
||||
}
|
||||
return string(b)
|
||||
}
|
||||
|
||||
func (g *SyntheticDataGenerator) randomDate() string {
|
||||
now := time.Now()
|
||||
daysAgo := g.rand.Intn(365) // Random date within last year
|
||||
pastDate := now.AddDate(0, 0, -daysAgo)
|
||||
return pastDate.Format("2006-01-02T15:04:05.000Z")
|
||||
}
|
||||
|
||||
func (g *SyntheticDataGenerator) generateReadmeContent(modelName, author string) string {
|
||||
templates := []string{
|
||||
fmt.Sprintf("# %s Model\n\nThis is a %s model developed by %s. It's designed for various natural language processing tasks including text generation, question answering, and conversation.\n\n## Features\n\n- High-quality text generation\n- Efficient inference\n- Multiple quantization options\n- Easy to use with LocalAI\n\n## Usage\n\nUse this model with LocalAI for various AI tasks.", strings.Title(modelName), modelName, author),
|
||||
fmt.Sprintf("# %s\n\nA powerful language model from %s. This model excels at understanding and generating human-like text across multiple domains.\n\n## Capabilities\n\n- Text completion\n- Code generation\n- Creative writing\n- Technical documentation\n\n## Model Details\n\n- Architecture: Transformer-based\n- Training: Large-scale supervised learning\n- Quantization: Available in multiple formats", strings.Title(modelName), author),
|
||||
fmt.Sprintf("# %s Language Model\n\nDeveloped by %s, this model represents state-of-the-art performance in natural language understanding and generation.\n\n## Key Features\n\n- Multilingual support\n- Context-aware responses\n- Efficient memory usage\n- Fast inference speed\n\n## Applications\n\n- Chatbots and virtual assistants\n- Content generation\n- Code completion\n- Educational tools", strings.Title(modelName), author),
|
||||
}
|
||||
|
||||
return templates[g.rand.Intn(len(templates))]
|
||||
}
|
||||
Reference in New Issue
Block a user