Fixed readTLE

This commit is contained in:
Jonathan Fransson
2019-04-09 15:27:52 -06:00
committed by Elon
parent 95079bb81a
commit 014e624258
7 changed files with 284 additions and 250 deletions

View File

@@ -55,6 +55,8 @@ local addSatelliteGroupObjects = function(group, tleFolder, shouldAddDuplicates)
Parent = transforms.EarthInertial.Identifier,
Renderable = {
Type = "RenderableSatellites",
--Type = "ElonsTest",
--Translation = {
-- Type = "TLETranslation",

View File

@@ -21,7 +21,7 @@
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
/*
#include <modules/space/rendering/elonstest.h>
#include <ghoul/logging/logmanager.h>
@@ -627,6 +627,7 @@ namespace openspace {
// );
// // KeplerTranslation keplerTranslation(orbit);
// const double period = orbit.period();
for (size_t i = 0; i <= _nSegments; ++i) {
size_t index = orbitIndex * nVerticesPerOrbit + i;
@@ -635,7 +636,7 @@ namespace openspace {
// positionAtTime.time = Time(orbit.epoch + timeOffset);
glm::vec3 position = _keplerTranslator.position(Time(orbit.epoch + timeOffset));
// glm::vec3 position = calculatePosition(Time(orbit.epoch + timeOffset), orbit.epoch);
_vertexBufferData[index].x = position.x;
_vertexBufferData[index].y = position.y;
@@ -673,3 +674,4 @@ namespace openspace {
// }
}
*/

View File

@@ -21,7 +21,7 @@
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
/*
#ifndef __OPENSPACE_MODULE_SPACE___ELONSTEST___H__
#define __OPENSPACE_MODULE_SPACE___ELONSTEST___H__
@@ -123,10 +123,11 @@ private:
/// Dirty flag for the _orbitPlaneRotation parameters
mutable bool _orbitPlaneDirty = true;
glm::dvec3 calculatePosition(const Time& time, double epoch) const;
// glm::dvec3 calculatePosition(const Time& time, double epoch) const;
};
} // namespace openspace
#endif // __OPENSPACE_MODULE_SPACE___ELONSTEST___H__
*/

View File

@@ -443,178 +443,153 @@ RenderableSatellites::RenderableSatellites(const ghoul::Dictionary& dictionary)
* test
*/
LINFO(fmt::format("KeyFile: {} ", KeyFile));
const std::string& file = dictionary.value<std::string>(KeyFile);
LINFO(fmt::format("file: {} ", file));
//readTLEFile(file);
LINFO(fmt::format("file: {} ", file));
LINFO(fmt::format("KeyFile: {} ", KeyFile));
}
void RenderableSatellites::readTLEFile(const std::string& filename) {
ghoul_assert(FileSys.fileExists(filename), "The filename must exist");
ghoul_assert(FileSys.fileExists(filename), "The filename must exist");
std::ifstream file;
file.exceptions(std::ofstream::failbit | std::ofstream::badbit);
file.open(filename);
// All of the Kepler element information
struct KeplerParameters{
double inclination = 0.0;
double semiMajorAxis = 0.0;
double ascendingNode = 0.0;
double eccentricity = 0.0;
double argumentOfPeriapsis = 0.0;
double meanAnomaly = 0.0;
double meanMotion = 0.0;
double epoch = 0.0;
};
std::ifstream file;
file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
file.open(filename);
//std::vector<KeplerTranslation::KeplerOrbit> TLEData;
std::vector<KeplerParameters> TLEData;
int numberOfLines = std::count(std::istreambuf_iterator<char>(file),
std::istreambuf_iterator<char>(), '\n' );
file.seekg(std::ios_base::beg);
// 3 because a TLE has 3 lines per element/ object.
int numberOfObjects = numberOfLines/3;
LINFO(fmt::format("Number of data elements: {}", numberOfObjects));
// int numberOfLines = std::count(std::istreambuf_iterator<char>(file),
// std::istreambuf_iterator<char>(), '\n' );
// 3 because a TLE has 3 lines per element/ object.
// int numberOfObjects = numberOfLines/3;
// LINFO("Number of data elements: " + numberOfObjects);
std::string line = "hej";
for (int i = 0; i < numberOfObjects; i++) {
// for(int i=0 ; i<numberOfObjects; ++i){
// TLEData.push_back();
// }
std::string line;
while(std::getline(file, line)) {
KeplerParameters keplerElements;
std::getline(file, line);
if (line[0] == '1') {
// First line
// Field Columns Content
// 1 01-01 Line number
// 2 03-07 Satellite number
// 3 08-08 Classification (U = Unclassified)
// 4 10-11 International Designator (Last two digits of launch year)
// 5 12-14 International Designator (Launch number of the year)
// 6 15-17 International Designator(piece of the launch) A
// 7 19-20 Epoch Year(last two digits of year)
// 8 21-32 Epoch(day of the year and fractional portion of the day)
// 9 34-43 First Time Derivative of the Mean Motion divided by two
// 10 45-52 Second Time Derivative of Mean Motion divided by six
// 11 54-61 BSTAR drag term(decimal point assumed)[10] - 11606 - 4
// 12 63-63 The "Ephemeris type"
// 13 65-68 Element set number.Incremented when a new TLE is generated
// 14 69-69 Checksum (modulo 10)
keplerElements.epoch = epochFromSubstring(line.substr(18, 14));
} else {
throw ghoul::RuntimeError(fmt::format(
"File {} @ line {} does not have '1' header", filename // linNum + 1
));
}
std::getline(file, line);
if (line[0] == '2') {
// Second line
// Field Columns Content
// 1 01-01 Line number
// 2 03-07 Satellite number
// 3 09-16 Inclination (degrees)
// 4 18-25 Right ascension of the ascending node (degrees)
// 5 27-33 Eccentricity (decimal point assumed)
// 6 35-42 Argument of perigee (degrees)
// 7 44-51 Mean Anomaly (degrees)
// 8 53-63 Mean Motion (revolutions per day)
// 9 64-68 Revolution number at epoch (revolutions)
// 10 69-69 Checksum (modulo 10)
std::stringstream stream;
stream.exceptions(std::ios::failbit);
// Get inclination
stream.str(line.substr(8, 8));
stream >> keplerElements.inclination;
stream.clear();
// Get Right ascension of the ascending node
stream.str(line.substr(17, 8));
stream >> keplerElements.ascendingNode;
stream.clear();
// Get Eccentricity
stream.str("0." + line.substr(26, 7));
stream >> keplerElements.eccentricity;
stream.clear();
// Get argument of periapsis
stream.str(line.substr(34, 8));
stream >> keplerElements.argumentOfPeriapsis;
stream.clear();
// Get mean anomaly
stream.str(line.substr(43, 8));
stream >> keplerElements.meanAnomaly;
stream.clear();
// Get mean motion
stream.str(line.substr(52, 11));
stream >> keplerElements.meanMotion;
} else {
throw ghoul::RuntimeError(fmt::format(
"File {} @ line {} does not have '2' header", filename // , lineNum + 2
));
}
// Calculate the semi major axis based on the mean motion using kepler's laws
keplerElements.semiMajorAxis = calculateSemiMajorAxis(keplerElements.meanMotion);
std::getline(file, line); // get rid of title
// Converting the mean motion (revolutions per day) to period (seconds per revolution)
using namespace std::chrono;
double period = seconds(hours(24)).count() / keplerElements.meanMotion;
/*
KeplerTranslation::KeplerOrbit TLEElements{
keplerElements.eccentricity,
keplerElements.semiMajorAxis,
keplerElements.inclination,
keplerElements.ascendingNode,
keplerElements.argumentOfPeriapsis,
keplerElements.meanAnomaly,
period,
keplerElements.epoch
};
KeplerParameters keplerElements;
*/
_keplerTranslator.setKeplerElements(
keplerElements.eccentricity,
keplerElements.semiMajorAxis,
keplerElements.inclination,
keplerElements.ascendingNode,
keplerElements.argumentOfPeriapsis,
keplerElements.meanAnomaly,
period,
keplerElements.epoch
);
TLEData.push_back(keplerElements);
std::getline(file, line);
if (line[0] == '1') {
// First line
// Field Columns Content
// 1 01-01 Line number
// 2 03-07 Satellite number
// 3 08-08 Classification (U = Unclassified)
// 4 10-11 International Designator (Last two digits of launch year)
// 5 12-14 International Designator (Launch number of the year)
// 6 15-17 International Designator(piece of the launch) A
// 7 19-20 Epoch Year(last two digits of year)
// 8 21-32 Epoch(day of the year and fractional portion of the day)
// 9 34-43 First Time Derivative of the Mean Motion divided by two
// 10 45-52 Second Time Derivative of Mean Motion divided by six
// 11 54-61 BSTAR drag term(decimal point assumed)[10] - 11606 - 4
// 12 63-63 The "Ephemeris type"
// 13 65-68 Element set number.Incremented when a new TLE is generated
// 14 69-69 Checksum (modulo 10)
keplerElements.epoch = epochFromSubstring(line.substr(18, 14));
}
else {
throw ghoul::RuntimeError(fmt::format(
"File {} @ line {} does not have '1' header", filename // linNum + 1
));
}
std::getline(file, line);
if (line[0] == '2') {
// Second line
// Field Columns Content
// 1 01-01 Line number
// 2 03-07 Satellite number
// 3 09-16 Inclination (degrees)
// 4 18-25 Right ascension of the ascending node (degrees)
// 5 27-33 Eccentricity (decimal point assumed)
// 6 35-42 Argument of perigee (degrees)
// 7 44-51 Mean Anomaly (degrees)
// 8 53-63 Mean Motion (revolutions per day)
// 9 64-68 Revolution number at epoch (revolutions)
// 10 69-69 Checksum (modulo 10)
} // !while loop
file.close();
}
std::stringstream stream;
stream.exceptions(std::ios::failbit);
// Get inclination
stream.str(line.substr(8, 8));
stream >> keplerElements.inclination;
stream.clear();
// Get Right ascension of the ascending node
stream.str(line.substr(17, 8));
stream >> keplerElements.ascendingNode;
stream.clear();
// Get Eccentricity
stream.str("0." + line.substr(26, 7));
stream >> keplerElements.eccentricity;
stream.clear();
// Get argument of periapsis
stream.str(line.substr(34, 8));
stream >> keplerElements.argumentOfPeriapsis;
stream.clear();
// Get mean anomaly
stream.str(line.substr(43, 8));
stream >> keplerElements.meanAnomaly;
stream.clear();
// Get mean motion
stream.str(line.substr(52, 11));
stream >> keplerElements.meanMotion;
}
else {
throw ghoul::RuntimeError(fmt::format(
"File {} @ line {} does not have '2' header", filename // , lineNum + 2
));
}
// Calculate the semi major axis based on the mean motion using kepler's laws
keplerElements.semiMajorAxis = calculateSemiMajorAxis(keplerElements.meanMotion);
using namespace std::chrono;
double period = seconds(hours(24)).count() / keplerElements.meanMotion;
keplerElements.period = period;
// _keplerTranslator.setKeplerElements(
// keplerElements.eccentricity,
// keplerElements.semiMajorAxis,
// keplerElements.inclination,
// keplerElements.ascendingNode,
// keplerElements.argumentOfPeriapsis,
// keplerElements.meanAnomaly,
// period,
// keplerElements.epoch
// );
_TLEData.push_back(keplerElements);
} // !while loop
file.close();
}
/*
RenderableSatellites::~RenderableSatellites() {
using namespace std::chrono;
double period = seconds(hours(24)).count() / keplerElements.meanMotion;
keplerElements.period = period;
}
*/
void RenderableSatellites::initialize() {
//readFromCsvFile();
//LINFO(fmt::format("_path: {} ", _path));
//readTLEFile(_path);
//updateBuffers();
LINFO(fmt::format("_path: {} ", _path));
readTLEFile(_path);
updateBuffers();
//_path.onChange([this]() {
// readFromCsvFile();
@@ -636,11 +611,10 @@ void RenderableSatellites::deinitialize() {
}
void RenderableSatellites::initializeGL() {
/*
glGenVertexArrays(1, &_vertexArray);
glGenBuffers(1, &_vertexBuffer);
glGenBuffers(1, &_indexBuffer);
*/
_programObject = SpaceModule::ProgramObjectManager.request(
ProgramName,
[]() -> std::unique_ptr<ghoul::opengl::ProgramObject> {
@@ -659,126 +633,143 @@ void RenderableSatellites::initializeGL() {
_uniformCache.useLineFade = _programObject->uniformLocation("useLineFade");
_uniformCache.lineFade = _programObject->uniformLocation("lineFade");
setRenderBin(Renderable::RenderBin::Overlay);*/
setRenderBin(Renderable::RenderBin::Overlay);
*/
}
void RenderableSatellites::deinitializeGL() {
/*SpaceModule::ProgramObjectManager.release(ProgramName);
// SpaceModule::ProgramObjectManager.release(ProgramName);
glDeleteBuffers(1, &_vertexBuffer);
glDeleteBuffers(1, &_indexBuffer);
glDeleteVertexArrays(1, &_vertexArray);*/
glDeleteVertexArrays(1, &_vertexArray);
}
bool RenderableSatellites::isReady() const {
_programObject->activate();
return true;
}
void RenderableSatellites::update(const UpdateData&) {}
void RenderableSatellites::render(const RenderData& data, RendererTasks&) {
//_programObject->activate();
//_programObject->setUniform(_uniformCache.opacity, _opacity);
//
//glm::dmat4 modelTransform =
// glm::translate(glm::dmat4(1.0), data.modelTransform.translation) *
// glm::dmat4(data.modelTransform.rotation) *
// glm::scale(glm::dmat4(1.0), glm::dvec3(data.modelTransform.scale));
_programObject->activate();
_programObject->setUniform(_uniformCache.opacity, _opacity);
//_programObject->setUniform(
// _uniformCache.modelView,
// data.camera.combinedViewMatrix() * modelTransform
//);
glm::dmat4 modelTransform =
glm::translate(glm::dmat4(1.0), data.modelTransform.translation) *
glm::dmat4(data.modelTransform.rotation) *
glm::scale(glm::dmat4(1.0), glm::dvec3(data.modelTransform.scale));
//_programObject->setUniform(_uniformCache.projection, data.camera.projectionMatrix());
//_programObject->setUniform(_uniformCache.color, _appearance.lineColor);
////_programObject->setUniform(_uniformCache.useLineFade, _appearance.useLineFade);
_programObject->setUniform(
_uniformCache.modelView,
data.camera.combinedViewMatrix() * modelTransform
);
///*if (_appearance.useLineFade) {
// _programObject->setUniform(_uniformCache.lineFade, _appearance.lineFade);
//}*/
_programObject->setUniform(_uniformCache.projection, data.camera.projectionMatrix());
_programObject->setUniform(_uniformCache.color, _appearance.lineColor);
//_programObject->setUniform(_uniformCache.useLineFade, _appearance.useLineFade);
//glDepthMask(false);
////glBlendFunc(GL_SRC_ALPHA, GL_ONE);
/*if (_appearance.useLineFade) {
_programObject->setUniform(_uniformCache.lineFade, _appearance.lineFade);
}*/
//glBindVertexArray(_vertexArray);
//glDrawElements(GL_LINES,
// static_cast<unsigned int>(_indexBufferData.size()),
// GL_UNSIGNED_INT,
// 0);
//glBindVertexArray(0);
//_programObject->deactivate();
glDepthMask(false);
//glBlendFunc(GL_SRC_ALPHA, GL_ONE);
glBindVertexArray(_vertexArray);
glDrawElements(GL_LINES,
static_cast<unsigned int>(_indexBufferData.size()),
GL_UNSIGNED_INT,
0);
glBindVertexArray(0);
_programObject->deactivate();
}
void RenderableSatellites::updateBuffers() {
//const size_t nverticesperorbit = _nsegments + 1;
//_vertexbufferdata.resize(tledata.size() * nverticesperorbit);
//_indexbufferdata.resize(tledata.size() * _nsegments * 2);
//
//size_t orbitindex = 0;
//size_t elementindex = 0;
const size_t nVerticesPerOrbit = _nSegments + 1;
_vertexBufferData.resize(_TLEData.size() * nVerticesPerOrbit);
_indexBufferData.resize(_TLEData.size() * _nSegments * 2);
size_t orbitindex = 0;
size_t elementindex = 0;
//for (const auto& orbit : tledata) {
// // keplertranslation setkeplerelements(orbit);
// _keplertranslator.setkeplerelements(
// orbit.eccentricity,
// orbit.semimajoraxis,
// orbit.inclination,
// orbit.ascendingnode,
// orbit.argumentofperiapsis,
// orbit.meananomalyatepoch,
// orbit.period,
// orbit.epoch
// );
// // keplertranslation keplertranslation(orbit);
// const double period = orbit.period();
// for (size_t i = 0; i <= _nsegments; ++i) {
// size_t index = orbitindex * nverticesperorbit + i;
for (const auto& orbit : _TLEData) {
// keplertranslation setkeplerelements(orbit);
//_keplerTranslator.setKeplerElements(
// orbit.eccentricity,
// orbit.semiMajorAxis,
// orbit.inclination,
// orbit.ascendingNode,
// orbit.argumentOfPeriapsis,
// orbit.meanAnomalyAtEpoch,
// orbit.period,
// orbit.epoch
//);
// double timeoffset = period *
// static_cast<float>(i) / static_cast<float>(_nsegments);
_keplerTranslator.setKeplerElements(
orbit.eccentricity,
orbit.semiMajorAxis,
orbit.inclination,
orbit.ascendingNode,
orbit.argumentOfPeriapsis,
orbit.meanAnomaly,
orbit.period,
orbit.epoch
);
// keplertranslation keplertranslation(orbit);
// // _updatedata.time.settime(orbit.epoch + timeoffset);
// // updatedata::time(time(orbit.epoch + timeoffset));
// period() does not seem to exist!?!?!
// const double period = orbit.period();
for (size_t i = 0; i <= _nSegments; ++i) {
size_t index = orbitindex * nVerticesPerOrbit + i;
// updatedata updatetime;
// updatetime.time = time(orbit.epoch + timeoffset);
//
// glm::vec3 position = _keplertranslator.position(updatetime);
// // _keplertranslator.position(_updatedata.time);
//
float timeOffset = orbit.period *
static_cast<float>(i) / static_cast<float>(_nSegments);
// _vertexbufferdata[index].x = position.x;
// _vertexbufferdata[index].y = position.y;
// _vertexbufferdata[index].z = position.z;
// _vertexbufferdata[index].time = timeoffset;
// if (i > 0) {
// _indexbufferdata[elementindex++] = static_cast<unsigned int>(index) - 1;
// _indexbufferdata[elementindex++] = static_cast<unsigned int>(index);
// }
// }
// ++orbitindex;
//}
//
//glbindvertexarray(_vertexarray);
//
//glbindbuffer(gl_array_buffer, _vertexbuffer);
//glbufferdata(gl_array_buffer,
// _vertexbufferdata.size() * sizeof(trailvbolayout),
// _vertexbufferdata.data(),
// gl_static_draw
// );
//
// _updatedata.time.settime(orbit.epoch + timeoffset);
// updatedata::time(time(orbit.epoch + timeoffset));
//glbindbuffer(gl_element_array_buffer, _indexbuffer);
//glbufferdata(gl_element_array_buffer,
// _indexbufferdata.size() * sizeof(int),
// _indexbufferdata.data(),
// gl_static_draw
// );
//
//glbindvertexarray(0);
// time = Time(orbit.epoch + timeoffset);
glm::vec3 position = _keplerTranslator.debrisPos(Time(orbit.epoch + timeOffset));
// _keplertranslator.position(_updatedata.time);
_vertexBufferData[index].x = position.x;
_vertexBufferData[index].y = position.y;
_vertexBufferData[index].z = position.z;
_vertexBufferData[index].time = timeOffset;
if (i > 0) {
_indexBufferData[elementindex++] = static_cast<unsigned int>(index) - 1;
_indexBufferData[elementindex++] = static_cast<unsigned int>(index);
}
}
++orbitindex;
}
glBindVertexArray(_vertexArray);
glBindBuffer(GL_ARRAY_BUFFER, _vertexBuffer);
glBufferData(GL_ARRAY_BUFFER,
_vertexBufferData.size() * sizeof(TrailVBOLayout),
_vertexBufferData.data(),
GL_STATIC_DRAW
);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _indexBuffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
_indexBufferData.size() * sizeof(int),
_indexBufferData.data(),
GL_STATIC_DRAW
);
glBindVertexArray(0);
}

View File

@@ -39,6 +39,18 @@
namespace openspace {
struct KeplerParameters {
double inclination = 0.0;
double semiMajorAxis = 0.0;
double ascendingNode = 0.0;
double eccentricity = 0.0;
double argumentOfPeriapsis = 0.0;
double meanAnomaly = 0.0;
double meanMotion = 0.0;
double epoch = 0.0;
double period = 0.0;
};
class RenderableSatellites : public Renderable {
public:
RenderableSatellites(const ghoul::Dictionary& dictionary);
@@ -63,7 +75,7 @@ namespace openspace {
};
KeplerTranslation _keplerTranslator;
std::vector<KeplerTranslation::KeplerOrbit> TLEData;
std::vector<KeplerParameters> _TLEData;
/// The backend storage for the vertex buffer object containing all points for this
/// trail.
@@ -97,10 +109,10 @@ namespace openspace {
properties::StringProperty _meanAnomalyAtEpochColumnName;
properties::StringProperty _epochColumnName;
//RenderableTrail::Appearance _appearance;
RenderableTrail::Appearance _appearance;
// UniformCache(opacity, modelView, projection, color, useLineFade, lineFade)
// _uniformCache;
UniformCache(opacity, modelView, projection, color, useLineFade, lineFade)
_uniformCache;
/**
* Reads the provided TLE file and calles the KeplerTranslation::setKeplerElments

View File

@@ -323,6 +323,26 @@ glm::dvec3 KeplerTranslation::position(const UpdateData& data) const {
return _orbitPlaneRotation * p;
}
glm::dvec3 KeplerTranslation::debrisPos(const Time& time) const {
if (_orbitPlaneDirty) {
computeOrbitPlane();
_orbitPlaneDirty = false;
}
const double t = time.j2000Seconds() - _epoch;
const double meanMotion = glm::two_pi<double>() / _period;
const double meanAnomaly = glm::radians(_meanAnomalyAtEpoch.value()) + t * meanMotion;
const double e = eccentricAnomaly(meanAnomaly);
// Use the eccentric anomaly to compute the actual location
const glm::dvec3 p = {
_semiMajorAxis * 1000.0 * (cos(e) - _eccentricity),
_semiMajorAxis * 1000.0 * sin(e) * sqrt(1.0 - _eccentricity * _eccentricity),
0.0
};
return _orbitPlaneRotation * p;
}
void KeplerTranslation::computeOrbitPlane() const {
// We assume the following coordinate system:
// z = axis of rotation

View File

@@ -91,6 +91,12 @@ public:
glm::dvec3 position(const Time& time) const ;
glm::dvec3 position(const UpdateData& data) const override;
// Is only used in renderableDebris so far
// glm::dvec3 position(const Time& time) const;
glm::dvec3 debrisPos(const Time& time) const;
/**
* Method returning the openspace::Documentation that describes the ghoul::Dictinoary
* that can be passed to the constructor.