Update third party licenses. Add text and remove unused libraries

This commit is contained in:
Alexander Bock
2024-03-28 20:15:44 +01:00
parent 9cf5e55ad6
commit 48ba2d776d
9 changed files with 1173 additions and 1409 deletions

View File

@@ -1,4 +1,4 @@
Copyright (c) 2014-2023
Copyright (c) 2014-2024
Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
@@ -16,3 +16,6 @@ PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIG
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
See the THIRD_PARTY_LICENSES.md for a list an acknowledgement of all external libraries that
SGCT uses.

1167
THIRD_PARTY_LICENSES.md Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,303 +0,0 @@
/* -*- mode: c++; tab-width: 2; indent-tabs-mode: nil; -*-
Copyright (c) 2010-2012 Marcus Geelnard
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution.
*/
#include <exception>
#include "tinythread.h"
#if defined(_TTHREAD_POSIX_)
#include <unistd.h>
#include <map>
#elif defined(_TTHREAD_WIN32_)
#include <process.h>
#endif
namespace tthread {
//------------------------------------------------------------------------------
// condition_variable
//------------------------------------------------------------------------------
// NOTE 1: The Win32 implementation of the condition_variable class is based on
// the corresponding implementation in GLFW, which in turn is based on a
// description by Douglas C. Schmidt and Irfan Pyarali:
// http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
//
// NOTE 2: Windows Vista actually has native support for condition variables
// (InitializeConditionVariable, WakeConditionVariable, etc), but we want to
// be portable with pre-Vista Windows versions, so TinyThread++ does not use
// Vista condition variables.
//------------------------------------------------------------------------------
#if defined(_TTHREAD_WIN32_)
#define _CONDITION_EVENT_ONE 0
#define _CONDITION_EVENT_ALL 1
#endif
#if defined(_TTHREAD_WIN32_)
condition_variable::condition_variable() : mWaitersCount(0)
{
mEvents[_CONDITION_EVENT_ONE] = CreateEvent(NULL, FALSE, FALSE, NULL);
mEvents[_CONDITION_EVENT_ALL] = CreateEvent(NULL, TRUE, FALSE, NULL);
InitializeCriticalSection(&mWaitersCountLock);
}
#endif
#if defined(_TTHREAD_WIN32_)
condition_variable::~condition_variable()
{
CloseHandle(mEvents[_CONDITION_EVENT_ONE]);
CloseHandle(mEvents[_CONDITION_EVENT_ALL]);
DeleteCriticalSection(&mWaitersCountLock);
}
#endif
#if defined(_TTHREAD_WIN32_)
void condition_variable::_wait()
{
// Wait for either event to become signaled due to notify_one() or
// notify_all() being called
int result = WaitForMultipleObjects(2, mEvents, FALSE, INFINITE);
// Check if we are the last waiter
EnterCriticalSection(&mWaitersCountLock);
-- mWaitersCount;
bool lastWaiter = (result == (WAIT_OBJECT_0 + _CONDITION_EVENT_ALL)) &&
(mWaitersCount == 0);
LeaveCriticalSection(&mWaitersCountLock);
// If we are the last waiter to be notified to stop waiting, reset the event
if(lastWaiter)
ResetEvent(mEvents[_CONDITION_EVENT_ALL]);
}
#endif
#if defined(_TTHREAD_WIN32_)
void condition_variable::notify_one()
{
// Are there any waiters?
EnterCriticalSection(&mWaitersCountLock);
bool haveWaiters = (mWaitersCount > 0);
LeaveCriticalSection(&mWaitersCountLock);
// If we have any waiting threads, send them a signal
if(haveWaiters)
SetEvent(mEvents[_CONDITION_EVENT_ONE]);
}
#endif
#if defined(_TTHREAD_WIN32_)
void condition_variable::notify_all()
{
// Are there any waiters?
EnterCriticalSection(&mWaitersCountLock);
bool haveWaiters = (mWaitersCount > 0);
LeaveCriticalSection(&mWaitersCountLock);
// If we have any waiting threads, send them a signal
if(haveWaiters)
SetEvent(mEvents[_CONDITION_EVENT_ALL]);
}
#endif
//------------------------------------------------------------------------------
// POSIX pthread_t to unique thread::id mapping logic.
// Note: Here we use a global thread safe std::map to convert instances of
// pthread_t to small thread identifier numbers (unique within one process).
// This method should be portable across different POSIX implementations.
//------------------------------------------------------------------------------
#if defined(_TTHREAD_POSIX_)
static thread::id _pthread_t_to_ID(const pthread_t &aHandle)
{
static mutex idMapLock;
static std::map<pthread_t, unsigned long int> idMap;
static unsigned long int idCount(1);
lock_guard<mutex> guard(idMapLock);
if(idMap.find(aHandle) == idMap.end())
idMap[aHandle] = idCount ++;
return thread::id(idMap[aHandle]);
}
#endif // _TTHREAD_POSIX_
//------------------------------------------------------------------------------
// thread
//------------------------------------------------------------------------------
/// Information to pass to the new thread (what to run).
struct _thread_start_info {
void (*mFunction)(void *); ///< Pointer to the function to be executed.
void * mArg; ///< Function argument for the thread function.
thread * mThread; ///< Pointer to the thread object.
};
// Thread wrapper function.
#if defined(_TTHREAD_WIN32_)
unsigned WINAPI thread::wrapper_function(void * aArg)
#elif defined(_TTHREAD_POSIX_)
void * thread::wrapper_function(void * aArg)
#endif
{
// Get thread startup information
_thread_start_info * ti = (_thread_start_info *) aArg;
try
{
// Call the actual client thread function
ti->mFunction(ti->mArg);
}
catch(...)
{
// Uncaught exceptions will terminate the application (default behavior
// according to C++11)
std::terminate();
}
// The thread is no longer executing
lock_guard<mutex> guard(ti->mThread->mDataMutex);
ti->mThread->mNotAThread = true;
// The thread is responsible for freeing the startup information
delete ti;
return 0;
}
thread::thread(void (*aFunction)(void *), void * aArg)
{
// Serialize access to this thread structure
lock_guard<mutex> guard(mDataMutex);
// Fill out the thread startup information (passed to the thread wrapper,
// which will eventually free it)
_thread_start_info * ti = new _thread_start_info;
ti->mFunction = aFunction;
ti->mArg = aArg;
ti->mThread = this;
// The thread is now alive
mNotAThread = false;
// Create the thread
#if defined(_TTHREAD_WIN32_)
mHandle = (HANDLE) _beginthreadex(0, 0, wrapper_function, (void *) ti, 0, &mWin32ThreadID);
#elif defined(_TTHREAD_POSIX_)
if(pthread_create(&mHandle, NULL, wrapper_function, (void *) ti) != 0)
mHandle = 0;
#endif
// Did we fail to create the thread?
if(!mHandle)
{
mNotAThread = true;
delete ti;
}
}
thread::~thread()
{
if(joinable())
std::terminate();
}
void thread::join()
{
if(joinable())
{
#if defined(_TTHREAD_WIN32_)
WaitForSingleObject(mHandle, INFINITE);
CloseHandle(mHandle);
#elif defined(_TTHREAD_POSIX_)
pthread_join(mHandle, NULL);
#endif
}
}
bool thread::joinable() const
{
mDataMutex.lock();
bool result = !mNotAThread;
mDataMutex.unlock();
return result;
}
void thread::detach()
{
mDataMutex.lock();
if(!mNotAThread)
{
#if defined(_TTHREAD_WIN32_)
CloseHandle(mHandle);
#elif defined(_TTHREAD_POSIX_)
pthread_detach(mHandle);
#endif
mNotAThread = true;
}
mDataMutex.unlock();
}
thread::id thread::get_id() const
{
if(!joinable())
return id();
#if defined(_TTHREAD_WIN32_)
return id((unsigned long int) mWin32ThreadID);
#elif defined(_TTHREAD_POSIX_)
return _pthread_t_to_ID(mHandle);
#endif
}
unsigned thread::hardware_concurrency()
{
#if defined(_TTHREAD_WIN32_)
SYSTEM_INFO si;
GetSystemInfo(&si);
return (int) si.dwNumberOfProcessors;
#elif defined(_SC_NPROCESSORS_ONLN)
return (int) sysconf(_SC_NPROCESSORS_ONLN);
#elif defined(_SC_NPROC_ONLN)
return (int) sysconf(_SC_NPROC_ONLN);
#else
// The standard requires this function to return zero if the number of
// hardware cores could not be determined.
return 0;
#endif
}
//------------------------------------------------------------------------------
// this_thread
//------------------------------------------------------------------------------
thread::id this_thread::get_id()
{
#if defined(_TTHREAD_WIN32_)
return thread::id((unsigned long int) GetCurrentThreadId());
#elif defined(_TTHREAD_POSIX_)
return _pthread_t_to_ID(pthread_self());
#endif
}
}

View File

@@ -1,714 +0,0 @@
/* -*- mode: c++; tab-width: 2; indent-tabs-mode: nil; -*-
Copyright (c) 2010-2012 Marcus Geelnard
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution.
*/
#ifndef _TINYTHREAD_H_
#define _TINYTHREAD_H_
/// @file
/// @mainpage TinyThread++ API Reference
///
/// @section intro_sec Introduction
/// TinyThread++ is a minimal, portable implementation of basic threading
/// classes for C++.
///
/// They closely mimic the functionality and naming of the C++11 standard, and
/// should be easily replaceable with the corresponding std:: variants.
///
/// @section port_sec Portability
/// The Win32 variant uses the native Win32 API for implementing the thread
/// classes, while for other systems, the POSIX threads API (pthread) is used.
///
/// @section class_sec Classes
/// In order to mimic the threading API of the C++11 standard, subsets of
/// several classes are provided. The fundamental classes are:
/// @li tthread::thread
/// @li tthread::mutex
/// @li tthread::recursive_mutex
/// @li tthread::condition_variable
/// @li tthread::lock_guard
/// @li tthread::fast_mutex
///
/// @section misc_sec Miscellaneous
/// The following special keywords are available: #thread_local.
///
/// For more detailed information (including additional classes), browse the
/// different sections of this documentation. A good place to start is:
/// tinythread.h.
// Which platform are we on?
#if !defined(_TTHREAD_PLATFORM_DEFINED_)
#if defined(_WIN32) || defined(__WIN32__) || defined(__WINDOWS__)
#define _TTHREAD_WIN32_
#else
#define _TTHREAD_POSIX_
#endif
#define _TTHREAD_PLATFORM_DEFINED_
#endif
// Platform specific includes
#if defined(_TTHREAD_WIN32_)
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#define __UNDEF_LEAN_AND_MEAN
#endif
#include <windows.h>
#ifdef __UNDEF_LEAN_AND_MEAN
#undef WIN32_LEAN_AND_MEAN
#undef __UNDEF_LEAN_AND_MEAN
#endif
#else
#include <pthread.h>
#include <signal.h>
#include <sched.h>
#include <unistd.h>
#endif
// Generic includes
#include <ostream>
/// TinyThread++ version (major number).
#define TINYTHREAD_VERSION_MAJOR 1
/// TinyThread++ version (minor number).
#define TINYTHREAD_VERSION_MINOR 1
/// TinyThread++ version (full version).
#define TINYTHREAD_VERSION (TINYTHREAD_VERSION_MAJOR * 100 + TINYTHREAD_VERSION_MINOR)
// Do we have a fully featured C++11 compiler?
#if (__cplusplus > 199711L) || (defined(__STDCXX_VERSION__) && (__STDCXX_VERSION__ >= 201001L))
#define _TTHREAD_CPP11_
#endif
// ...at least partial C++11?
#if defined(_TTHREAD_CPP11_) || defined(__GXX_EXPERIMENTAL_CXX0X__) || defined(__GXX_EXPERIMENTAL_CPP0X__)
#define _TTHREAD_CPP11_PARTIAL_
#endif
// Macro for disabling assignments of objects.
#ifdef _TTHREAD_CPP11_PARTIAL_
#define _TTHREAD_DISABLE_ASSIGNMENT(name) \
name(const name&) = delete; \
name& operator=(const name&) = delete;
#else
#define _TTHREAD_DISABLE_ASSIGNMENT(name) \
name(const name&); \
name& operator=(const name&);
#endif
/// @def thread_local
/// Thread local storage keyword.
/// A variable that is declared with the @c thread_local keyword makes the
/// value of the variable local to each thread (known as thread-local storage,
/// or TLS). Example usage:
/// @code
/// // This variable is local to each thread.
/// thread_local int variable;
/// @endcode
/// @note The @c thread_local keyword is a macro that maps to the corresponding
/// compiler directive (e.g. @c __declspec(thread)). While the C++11 standard
/// allows for non-trivial types (e.g. classes with constructors and
/// destructors) to be declared with the @c thread_local keyword, most pre-C++11
/// compilers only allow for trivial types (e.g. @c int). So, to guarantee
/// portable code, only use trivial types for thread local storage.
/// @note This directive is currently not supported on Mac OS X (it will give
/// a compiler error), since compile-time TLS is not supported in the Mac OS X
/// executable format. Also, some older versions of MinGW (before GCC 4.x) do
/// not support this directive.
/// @hideinitializer
#if !defined(_TTHREAD_CPP11_) && !defined(thread_local)
#if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_CC) || defined(__IBMCPP__)
#define thread_local __thread
#else
#define thread_local __declspec(thread)
#endif
#endif
/// Main name space for TinyThread++.
/// This namespace is more or less equivalent to the @c std namespace for the
/// C++11 thread classes. For instance, the tthread::mutex class corresponds to
/// the std::mutex class.
namespace tthread {
/// Mutex class.
/// This is a mutual exclusion object for synchronizing access to shared
/// memory areas for several threads. The mutex is non-recursive (i.e. a
/// program may deadlock if the thread that owns a mutex object calls lock()
/// on that object).
/// @see recursive_mutex
class mutex {
public:
/// Constructor.
mutex()
#if defined(_TTHREAD_WIN32_)
: mAlreadyLocked(false)
#endif
{
#if defined(_TTHREAD_WIN32_)
InitializeCriticalSection(&mHandle);
#else
pthread_mutex_init(&mHandle, NULL);
#endif
}
/// Destructor.
~mutex()
{
#if defined(_TTHREAD_WIN32_)
DeleteCriticalSection(&mHandle);
#else
pthread_mutex_destroy(&mHandle);
#endif
}
/// Lock the mutex.
/// The method will block the calling thread until a lock on the mutex can
/// be obtained. The mutex remains locked until @c unlock() is called.
/// @see lock_guard
inline void lock()
{
#if defined(_TTHREAD_WIN32_)
EnterCriticalSection(&mHandle);
while(mAlreadyLocked) Sleep(1000); // Simulate deadlock...
mAlreadyLocked = true;
#else
pthread_mutex_lock(&mHandle);
#endif
}
/// Try to lock the mutex.
/// The method will try to lock the mutex. If it fails, the function will
/// return immediately (non-blocking).
/// @return @c true if the lock was acquired, or @c false if the lock could
/// not be acquired.
inline bool try_lock()
{
#if defined(_TTHREAD_WIN32_)
bool ret = (TryEnterCriticalSection(&mHandle) ? true : false);
if(ret && mAlreadyLocked)
{
LeaveCriticalSection(&mHandle);
ret = false;
}
return ret;
#else
return (pthread_mutex_trylock(&mHandle) == 0) ? true : false;
#endif
}
/// Unlock the mutex.
/// If any threads are waiting for the lock on this mutex, one of them will
/// be unblocked.
inline void unlock()
{
#if defined(_TTHREAD_WIN32_)
mAlreadyLocked = false;
LeaveCriticalSection(&mHandle);
#else
pthread_mutex_unlock(&mHandle);
#endif
}
_TTHREAD_DISABLE_ASSIGNMENT(mutex)
private:
#if defined(_TTHREAD_WIN32_)
CRITICAL_SECTION mHandle;
bool mAlreadyLocked;
#else
pthread_mutex_t mHandle;
#endif
friend class condition_variable;
};
/// Recursive mutex class.
/// This is a mutual exclusion object for synchronizing access to shared
/// memory areas for several threads. The mutex is recursive (i.e. a thread
/// may lock the mutex several times, as long as it unlocks the mutex the same
/// number of times).
/// @see mutex
class recursive_mutex {
public:
/// Constructor.
recursive_mutex()
{
#if defined(_TTHREAD_WIN32_)
InitializeCriticalSection(&mHandle);
#else
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&mHandle, &attr);
#endif
}
/// Destructor.
~recursive_mutex()
{
#if defined(_TTHREAD_WIN32_)
DeleteCriticalSection(&mHandle);
#else
pthread_mutex_destroy(&mHandle);
#endif
}
/// Lock the mutex.
/// The method will block the calling thread until a lock on the mutex can
/// be obtained. The mutex remains locked until @c unlock() is called.
/// @see lock_guard
inline void lock()
{
#if defined(_TTHREAD_WIN32_)
EnterCriticalSection(&mHandle);
#else
pthread_mutex_lock(&mHandle);
#endif
}
/// Try to lock the mutex.
/// The method will try to lock the mutex. If it fails, the function will
/// return immediately (non-blocking).
/// @return @c true if the lock was acquired, or @c false if the lock could
/// not be acquired.
inline bool try_lock()
{
#if defined(_TTHREAD_WIN32_)
return TryEnterCriticalSection(&mHandle) ? true : false;
#else
return (pthread_mutex_trylock(&mHandle) == 0) ? true : false;
#endif
}
/// Unlock the mutex.
/// If any threads are waiting for the lock on this mutex, one of them will
/// be unblocked.
inline void unlock()
{
#if defined(_TTHREAD_WIN32_)
LeaveCriticalSection(&mHandle);
#else
pthread_mutex_unlock(&mHandle);
#endif
}
_TTHREAD_DISABLE_ASSIGNMENT(recursive_mutex)
private:
#if defined(_TTHREAD_WIN32_)
CRITICAL_SECTION mHandle;
#else
pthread_mutex_t mHandle;
#endif
friend class condition_variable;
};
/// Lock guard class.
/// The constructor locks the mutex, and the destructor unlocks the mutex, so
/// the mutex will automatically be unlocked when the lock guard goes out of
/// scope. Example usage:
/// @code
/// mutex m;
/// int counter;
///
/// void increment()
/// {
/// lock_guard<mutex> guard(m);
/// ++ counter;
/// }
/// @endcode
template <class T>
class lock_guard {
public:
typedef T mutex_type;
lock_guard() : mMutex(0) {}
/// The constructor locks the mutex.
explicit lock_guard(mutex_type &aMutex)
{
mMutex = &aMutex;
mMutex->lock();
}
/// The destructor unlocks the mutex.
~lock_guard()
{
if(mMutex)
mMutex->unlock();
}
private:
mutex_type * mMutex;
};
/// Condition variable class.
/// This is a signalling object for synchronizing the execution flow for
/// several threads. Example usage:
/// @code
/// // Shared data and associated mutex and condition variable objects
/// int count;
/// mutex m;
/// condition_variable cond;
///
/// // Wait for the counter to reach a certain number
/// void wait_counter(int targetCount)
/// {
/// lock_guard<mutex> guard(m);
/// while(count < targetCount)
/// cond.wait(m);
/// }
///
/// // Increment the counter, and notify waiting threads
/// void increment()
/// {
/// lock_guard<mutex> guard(m);
/// ++ count;
/// cond.notify_all();
/// }
/// @endcode
class condition_variable {
public:
/// Constructor.
#if defined(_TTHREAD_WIN32_)
condition_variable();
#else
condition_variable()
{
pthread_cond_init(&mHandle, NULL);
}
#endif
/// Destructor.
#if defined(_TTHREAD_WIN32_)
~condition_variable();
#else
~condition_variable()
{
pthread_cond_destroy(&mHandle);
}
#endif
/// Wait for the condition.
/// The function will block the calling thread until the condition variable
/// is woken by @c notify_one(), @c notify_all() or a spurious wake up.
/// @param[in] aMutex A mutex that will be unlocked when the wait operation
/// starts, an locked again as soon as the wait operation is finished.
template <class _mutexT>
inline void wait(_mutexT &aMutex)
{
#if defined(_TTHREAD_WIN32_)
// Increment number of waiters
EnterCriticalSection(&mWaitersCountLock);
++ mWaitersCount;
LeaveCriticalSection(&mWaitersCountLock);
// Release the mutex while waiting for the condition (will decrease
// the number of waiters when done)...
aMutex.unlock();
_wait();
aMutex.lock();
#else
pthread_cond_wait(&mHandle, &aMutex.mHandle);
#endif
}
/// Notify one thread that is waiting for the condition.
/// If at least one thread is blocked waiting for this condition variable,
/// one will be woken up.
/// @note Only threads that started waiting prior to this call will be
/// woken up.
#if defined(_TTHREAD_WIN32_)
void notify_one();
#else
inline void notify_one()
{
pthread_cond_signal(&mHandle);
}
#endif
/// Notify all threads that are waiting for the condition.
/// All threads that are blocked waiting for this condition variable will
/// be woken up.
/// @note Only threads that started waiting prior to this call will be
/// woken up.
#if defined(_TTHREAD_WIN32_)
void notify_all();
#else
inline void notify_all()
{
pthread_cond_broadcast(&mHandle);
}
#endif
_TTHREAD_DISABLE_ASSIGNMENT(condition_variable)
private:
#if defined(_TTHREAD_WIN32_)
void _wait();
HANDLE mEvents[2]; ///< Signal and broadcast event HANDLEs.
unsigned int mWaitersCount; ///< Count of the number of waiters.
CRITICAL_SECTION mWaitersCountLock; ///< Serialize access to mWaitersCount.
#else
pthread_cond_t mHandle;
#endif
};
/// Thread class.
class thread {
public:
#if defined(_TTHREAD_WIN32_)
typedef HANDLE native_handle_type;
#else
typedef pthread_t native_handle_type;
#endif
class id;
/// Default constructor.
/// Construct a @c thread object without an associated thread of execution
/// (i.e. non-joinable).
thread() : mHandle(0), mNotAThread(true)
#if defined(_TTHREAD_WIN32_)
, mWin32ThreadID(0)
#endif
{}
/// Thread starting constructor.
/// Construct a @c thread object with a new thread of execution.
/// @param[in] aFunction A function pointer to a function of type:
/// <tt>void fun(void * arg)</tt>
/// @param[in] aArg Argument to the thread function.
/// @note This constructor is not fully compatible with the standard C++
/// thread class. It is more similar to the pthread_create() (POSIX) and
/// CreateThread() (Windows) functions.
thread(void (*aFunction)(void *), void * aArg);
/// Destructor.
/// @note If the thread is joinable upon destruction, @c std::terminate()
/// will be called, which terminates the process. It is always wise to do
/// @c join() before deleting a thread object.
~thread();
/// Wait for the thread to finish (join execution flows).
/// After calling @c join(), the thread object is no longer associated with
/// a thread of execution (i.e. it is not joinable, and you may not join
/// with it nor detach from it).
void join();
/// Check if the thread is joinable.
/// A thread object is joinable if it has an associated thread of execution.
bool joinable() const;
/// Detach from the thread.
/// After calling @c detach(), the thread object is no longer assicated with
/// a thread of execution (i.e. it is not joinable). The thread continues
/// execution without the calling thread blocking, and when the thread
/// ends execution, any owned resources are released.
void detach();
/// Return the thread ID of a thread object.
id get_id() const;
/// Get the native handle for this thread.
/// @note Under Windows, this is a @c HANDLE, and under POSIX systems, this
/// is a @c pthread_t.
inline native_handle_type native_handle()
{
return mHandle;
}
/// Determine the number of threads which can possibly execute concurrently.
/// This function is useful for determining the optimal number of threads to
/// use for a task.
/// @return The number of hardware thread contexts in the system.
/// @note If this value is not defined, the function returns zero (0).
static unsigned hardware_concurrency();
_TTHREAD_DISABLE_ASSIGNMENT(thread)
private:
native_handle_type mHandle; ///< Thread handle.
mutable mutex mDataMutex; ///< Serializer for access to the thread private data.
bool mNotAThread; ///< True if this object is not a thread of execution.
#if defined(_TTHREAD_WIN32_)
unsigned int mWin32ThreadID; ///< Unique thread ID (filled out by _beginthreadex).
#endif
// This is the internal thread wrapper function.
#if defined(_TTHREAD_WIN32_)
static unsigned WINAPI wrapper_function(void * aArg);
#else
static void * wrapper_function(void * aArg);
#endif
};
/// Thread ID.
/// The thread ID is a unique identifier for each thread.
/// @see thread::get_id()
class thread::id {
public:
/// Default constructor.
/// The default constructed ID is that of thread without a thread of
/// execution.
id() : mId(0) {};
id(unsigned long int aId) : mId(aId) {};
id(const id& aId) : mId(aId.mId) {};
inline id & operator=(const id &aId)
{
mId = aId.mId;
return *this;
}
inline friend bool operator==(const id &aId1, const id &aId2)
{
return (aId1.mId == aId2.mId);
}
inline friend bool operator!=(const id &aId1, const id &aId2)
{
return (aId1.mId != aId2.mId);
}
inline friend bool operator<=(const id &aId1, const id &aId2)
{
return (aId1.mId <= aId2.mId);
}
inline friend bool operator<(const id &aId1, const id &aId2)
{
return (aId1.mId < aId2.mId);
}
inline friend bool operator>=(const id &aId1, const id &aId2)
{
return (aId1.mId >= aId2.mId);
}
inline friend bool operator>(const id &aId1, const id &aId2)
{
return (aId1.mId > aId2.mId);
}
inline friend std::ostream& operator <<(std::ostream &os, const id &obj)
{
os << obj.mId;
return os;
}
private:
unsigned long int mId;
};
// Related to <ratio> - minimal to be able to support chrono.
typedef long long __intmax_t;
/// Minimal implementation of the @c ratio class. This class provides enough
/// functionality to implement some basic @c chrono classes.
template <__intmax_t N, __intmax_t D = 1> class ratio {
public:
static double _as_double() { return double(N) / double(D); }
};
/// Minimal implementation of the @c chrono namespace.
/// The @c chrono namespace provides types for specifying time intervals.
namespace chrono {
/// Duration template class. This class provides enough functionality to
/// implement @c this_thread::sleep_for().
template <class _Rep, class _Period = ratio<1> > class duration {
private:
_Rep rep_;
public:
typedef _Rep rep;
typedef _Period period;
/// Construct a duration object with the given duration.
template <class _Rep2>
explicit duration(const _Rep2& r) : rep_(r) {};
/// Return the value of the duration object.
rep count() const
{
return rep_;
}
};
// Standard duration types.
typedef duration<__intmax_t, ratio<1, 1000000000> > nanoseconds; ///< Duration with the unit nanoseconds.
typedef duration<__intmax_t, ratio<1, 1000000> > microseconds; ///< Duration with the unit microseconds.
typedef duration<__intmax_t, ratio<1, 1000> > milliseconds; ///< Duration with the unit milliseconds.
typedef duration<__intmax_t> seconds; ///< Duration with the unit seconds.
typedef duration<__intmax_t, ratio<60> > minutes; ///< Duration with the unit minutes.
typedef duration<__intmax_t, ratio<3600> > hours; ///< Duration with the unit hours.
}
/// The namespace @c this_thread provides methods for dealing with the
/// calling thread.
namespace this_thread {
/// Return the thread ID of the calling thread.
thread::id get_id();
/// Yield execution to another thread.
/// Offers the operating system the opportunity to schedule another thread
/// that is ready to run on the current processor.
inline void yield()
{
#if defined(_TTHREAD_WIN32_)
Sleep(0);
#else
sched_yield();
#endif
}
/// Blocks the calling thread for a period of time.
/// @param[in] aTime Minimum time to put the thread to sleep.
/// Example usage:
/// @code
/// // Sleep for 100 milliseconds
/// this_thread::sleep_for(chrono::milliseconds(100));
/// @endcode
/// @note Supported duration types are: nanoseconds, microseconds,
/// milliseconds, seconds, minutes and hours.
template <class _Rep, class _Period> void sleep_for(const chrono::duration<_Rep, _Period>& aTime)
{
#if defined(_TTHREAD_WIN32_)
Sleep(int(double(aTime.count()) * (1000.0 * _Period::_as_double()) + 0.5));
#else
usleep(int(double(aTime.count()) * (1000000.0 * _Period::_as_double()) + 0.5));
#endif
}
}
}
// Define/macro cleanup
#undef _TTHREAD_DISABLE_ASSIGNMENT
#endif // _TINYTHREAD_H_

Binary file not shown.

View File

@@ -1,343 +0,0 @@
////////////////////////////////////////////////////////////////////////////////
//
// Visual Leak Detector - Import Library Header
// Copyright (c) 2005-2014 VLD Team
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
//
// See COPYING.txt for the full terms of the GNU Lesser General Public License.
//
////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "vld_def.h"
typedef int VLD_BOOL;
typedef unsigned int VLD_UINT;
typedef size_t VLD_SIZET;
typedef void* VLD_HMODULE;
#if defined _DEBUG || defined VLD_FORCE_ENABLE
#pragma comment(lib, "vld.lib")
// Force a symbolic reference to the global VisualLeakDetector class object from
// the DLL. This ensures that the DLL is loaded and linked with the program,
// even if no code otherwise imports any of the DLL's exports.
#pragma comment(linker, "/include:__imp_?g_vld@@3VVisualLeakDetector@@A")
////////////////////////////////////////////////////////////////////////////////
//
// Visual Leak Detector APIs
//
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
// VLDDisable - Disables Visual Leak Detector's memory leak detection at
// runtime. If memory leak detection is already disabled, then calling this
// function has no effect.
//
// Note: In multithreaded programs, this function operates on a per-thread
// basis. In other words, if you call this function from one thread, then
// memory leak detection is only disabled for that thread. If memory leak
// detection is enabled for other threads, then it will remain enabled for
// those other threads. It was designed to work this way to insulate you,
// the programmer, from having to ensure thread synchronization when calling
// VLDEnable() and VLDDisable(). Without this, calling these two functions
// unsynchronized could result in unpredictable and unintended behavior.
// But this also means that if you want to disable memory leak detection
// process-wide, then you need to call this function from every thread in
// the process.
//
// Return Value:
//
// None.
//
__declspec(dllimport) void VLDDisable ();
// VLDEnable - Enables Visual Leak Detector's memory leak detection at runtime.
// If memory leak detection is already enabled, which it is by default, then
// calling this function has no effect.
//
// Note: In multithreaded programs, this function operates on a per-thread
// basis. In other words, if you call this function from one thread, then
// memory leak detection is only enabled for that thread. If memory leak
// detection is disabled for other threads, then it will remain disabled for
// those other threads. It was designed to work this way to insulate you,
// the programmer, from having to ensure thread synchronization when calling
// VLDEnable() and VLDDisable(). Without this, calling these two functions
// unsynchronized could result in unpredictable and unintended behavior.
// But this also means that if you want to enable memory leak detection
// process-wide, then you need to call this function from every thread in
// the process.
//
// Return Value:
//
// None.
//
__declspec(dllimport) void VLDEnable ();
// VLDRestore - Restore Visual Leak Detector's previous state.
//
// Return Value:
//
// None.
//
__declspec(dllimport) void VLDRestore ();
// VLDGlobalDisable - Disables Visual Leak Detector's memory leak detection at
// runtime in all threads. If memory leak detection is already disabled,
// then calling this function has no effect.
//
// Return Value:
//
// None.
//
__declspec(dllimport) void VLDGlobalDisable ();
// VLDGlobalEnable - Enables Visual Leak Detector's memory leak detection
// at runtime in all threads. If memory leak detection is already enabled,
// which it is by default, then calling this function has no effect.
//
// Return Value:
//
// None.
//
__declspec(dllimport) void VLDGlobalEnable ();
// VLDReportLeaks - Report leaks up to the execution point.
//
// Return Value:
//
// None.
//
__declspec(dllimport) VLD_UINT VLDReportLeaks ();
// VLDReportThreadLeaks - Report thread leaks up to the execution point.
//
// threadId: thread Id.
//
// Return Value:
//
// None.
//
__declspec(dllimport) VLD_UINT VLDReportThreadLeaks (VLD_UINT threadId);
// VLDGetLeaksCount - Return memory leaks count to the execution point.
//
// Return Value:
//
// None.
//
__declspec(dllimport) VLD_UINT VLDGetLeaksCount ();
// VLDGetThreadLeaksCount - Return thread memory leaks count to the execution point.
//
// threadId: thread Id.
//
// Return Value:
//
// None.
//
__declspec(dllimport) VLD_UINT VLDGetThreadLeaksCount (VLD_UINT threadId);
// VLDMarkAllLeaksAsReported - Mark all leaks as reported.
//
// Return Value:
//
// None.
//
__declspec(dllimport) void VLDMarkAllLeaksAsReported ();
// VLDMarkThreadLeaksAsReported - Mark thread leaks as reported.
//
// threadId: thread Id.
//
// Return Value:
//
// None.
//
__declspec(dllimport) void VLDMarkThreadLeaksAsReported (VLD_UINT threadId);
// VLDRefreshModules - Look for recently loaded DLLs and patch them if necessary.
//
// Return Value:
//
// None.
//
__declspec(dllimport) void VLDRefreshModules();
// VLDEnableModule - Enable Memory leak checking on the specified module.
//
// module: module handle.
//
// Return Value:
//
// None.
//
__declspec(dllimport) void VLDEnableModule(VLD_HMODULE module);
// VLDDisableModule - Disable Memory leak checking on the specified module.
//
// module: module handle.
//
// Return Value:
//
// None.
//
__declspec(dllimport) void VLDDisableModule(VLD_HMODULE module);
// VLDGetOptions - Return all current options.
//
// Return Value:
//
// Mask of current options.
//
__declspec(dllimport) VLD_UINT VLDGetOptions();
// VLDGetReportFilename - Return current report filename.
//
// filename: current report filename (max characters - MAX_PATH).
//
// Return Value:
//
// None.
//
__declspec(dllimport) void VLDGetReportFilename(wchar_t *filename);
// VLDSetOptions - Update the report options via function call rather than INI file.
//
// option_mask: Only the following flags are checked
// VLD_OPT_AGGREGATE_DUPLICATES
// VLD_OPT_MODULE_LIST_INCLUDE
// VLD_OPT_SAFE_STACK_WALK
// VLD_OPT_SLOW_DEBUGGER_DUMP
// VLD_OPT_TRACE_INTERNAL_FRAMES
// VLD_OPT_START_DISABLED
// VLD_OPT_SKIP_HEAPFREE_LEAKS
// VLD_OPT_VALIDATE_HEAPFREE
//
// maxDataDump: maximum number of user-data bytes to dump for each leaked block.
//
// maxTraceFrames: maximum number of frames per stack trace for each leaked block.
//
// Return Value:
//
// None.
//
__declspec(dllimport) void VLDSetOptions(VLD_UINT option_mask, VLD_SIZET maxDataDump, VLD_UINT maxTraceFrames);
// VLDSetModulesList - Set list of modules included/excluded in leak detection
// depending on parameter "includeModules".
//
// modules: list of modules to be forcefully included/excluded in leak detection.
//
// includeModules: include or exclude that modules.
//
// Return Value:
//
// None.
//
__declspec(dllimport) void VLDSetModulesList(const wchar_t *modules, VLD_BOOL includeModules);
// VLDGetModulesList - Return current list of included/excluded modules
// depending on flag VLD_OPT_TRACE_INTERNAL_FRAMES.
//
// modules: destination string for list of included/excluded modules (maximum length 512 characters).
//
// size: maximum string size.
//
// Return Value:
//
// VLD_BOOL: TRUE if include modules, otherwise FALSE.
//
__declspec(dllimport) VLD_BOOL VLDGetModulesList(wchar_t *modules, VLD_UINT size);
// VLDSetReportOptions - Update the report options via function call rather than INI file.
//
// Only the following flags are checked
// VLD_OPT_REPORT_TO_DEBUGGER
// VLD_OPT_REPORT_TO_FILE
// VLD_OPT_REPORT_TO_STDOUT
// VLD_OPT_UNICODE_REPORT
//
// filename is optional and can be NULL.
//
// Return Value:
//
// None.
//
__declspec(dllimport) void VLDSetReportOptions(VLD_UINT option_mask, const wchar_t *filename);
// VLDSetReportHook - Installs or uninstalls a client-defined reporting function by hooking it
// into the C run-time debug reporting process (debug version only).
//
// mode: The action to take: VLD_RPTHOOK_INSTALL or VLD_RPTHOOK_REMOVE.
//
// pfnNewHook: Report hook to install or remove.
//
// Return Value:
//
// int: 0 if success.
//
__declspec(dllimport) int VLDSetReportHook(int mode, VLD_REPORT_HOOK pfnNewHook);
// VLDResolveCallstacks - Performs symbol resolution for all saved extent CallStack's that have
// been tracked by Visual Leak Detector. This function is necessary for applications that
// dynamically load and unload modules, and through which memory leaks might be included.
// If this is NOT called, stack traces may have stack frames with no symbol information. This
// happens because the symbol API's cannot look up symbols for a binary / module that has been unloaded
// from the process.
//
// Return Value:
//
// None.
//
__declspec(dllexport) void VLDResolveCallstacks();
#ifdef __cplusplus
}
#endif // __cplusplus
#else // !_DEBUG
#define VLDEnable()
#define VLDDisable()
#define VLDRestore()
#define VLDReportLeaks() (0)
#define VLDReportThreadLeaks() (0)
#define VLDGetLeaksCount() (0)
#define VLDGetThreadLeaksCount() (0)
#define VLDMarkAllLeaksAsReported()
#define VLDMarkThreadLeaksAsReported(a)
#define VLDRefreshModules()
#define VLDEnableModule(a)
#define VLDDisableModule(b)
#define VLDGetOptions() (0)
#define VLDGetReportFilename(a)
#define VLDSetOptions(a, b, c)
#define VLDSetReportHook(a, b)
#define VLDSetModulesList(a)
#define VLDGetModulesList(a, b) (FALSE)
#define VLDSetReportOptions(a, b)
#endif // _DEBUG

View File

@@ -1,46 +0,0 @@
////////////////////////////////////////////////////////////////////////////////
//
// Visual Leak Detector - Import Library Header
// Copyright (c) 2005-2014 VLD Team
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
//
// See COPYING.txt for the full terms of the GNU Lesser General Public License.
//
////////////////////////////////////////////////////////////////////////////////
#pragma once
#include <wchar.h>
#define VLD_OPT_AGGREGATE_DUPLICATES 0x0001 // If set, aggregate duplicate leaks in the leak report.
#define VLD_OPT_MODULE_LIST_INCLUDE 0x0002 // If set, modules in the module list are included, all others are excluded.
#define VLD_OPT_REPORT_TO_DEBUGGER 0x0004 // If set, the memory leak report is sent to the debugger.
#define VLD_OPT_REPORT_TO_FILE 0x0008 // If set, the memory leak report is sent to a file.
#define VLD_OPT_SAFE_STACK_WALK 0x0010 // If set, the stack is walked using the "safe" method (StackWalk64).
#define VLD_OPT_SELF_TEST 0x0020 // If set, perform a self-test to verify memory leak self-checking.
#define VLD_OPT_SLOW_DEBUGGER_DUMP 0x0040 // If set, inserts a slight delay between sending output to the debugger.
#define VLD_OPT_START_DISABLED 0x0080 // If set, memory leak detection will initially disabled.
#define VLD_OPT_TRACE_INTERNAL_FRAMES 0x0100 // If set, include useless frames (e.g. internal to VLD) in call stacks.
#define VLD_OPT_UNICODE_REPORT 0x0200 // If set, the leak report will be encoded UTF-16 instead of ASCII.
#define VLD_OPT_VLDOFF 0x0400 // If set, VLD will be completely deactivated. It will not attach to any modules.
#define VLD_OPT_REPORT_TO_STDOUT 0x0800 // If set, the memory leak report is sent to stdout.
#define VLD_OPT_SKIP_HEAPFREE_LEAKS 0x1000 // If set, VLD skip HeapFree memory leaks.
#define VLD_OPT_VALIDATE_HEAPFREE 0x2000 // If set, VLD verifies and reports heap consistency for HeapFree calls.
#define VLD_RPTHOOK_INSTALL 0
#define VLD_RPTHOOK_REMOVE 1
typedef int (__cdecl * VLD_REPORT_HOOK)(int reportType, wchar_t *message, int *returnValue);