satellites_shared.asset added for debris

This commit is contained in:
Elon
2019-04-03 15:42:25 -06:00
committed by ElonOlsson
parent 23fb3b1f4c
commit d32f79106b
3 changed files with 24 additions and 827 deletions

View File

@@ -1,4 +1,5 @@
local transforms = asset.require('scene/solarsystem/planets/earth/transforms')
local assetHelper = asset.require('util/asset_helper')
local satImageFolder = asset.syncedResource({
Name = "Satellite Image Files",
@@ -42,161 +43,41 @@ local addSatelliteGroupObjects = function(group, tleFolder, shouldAddDuplicates)
end
return true
end
-- -------------------------------------------------------------------------------------
-- function getSat(title, file, lineNum, textureFile, group)
-- return {
-- Identifier = title,
-- Parent = transforms.EarthInertial.Identifier,
-- Renderable = {
-- Type = "RenderablePlaneImageLocal",
-- Enabled = true,
-- Size = 3e4,
-- Origin = "Center",
-- Body = "TLE",
-- Billboard = true,
-- Texture = textureFile
-- },
-- Transform = {
-- Translation = {
-- Type = "TLETranslation",
-- Body = title,
-- Observer = transforms.EarthInertial.Identifier,
-- File = file,
-- LineNumber = lineNum
-- },
-- Scale = {
-- Type = "StaticScale",
-- Scale = 1
-- }
-- },
-- Tag = { "earth_satellite_" .. group, "earth_satellite_" .. group .. "_marker" },
-- GUI = {
-- Path = "/Solar System/Planets/Earth/Satellites"
-- }
-- }
-- end
--
-- function getSatTrail(title, file, lineNum, per, color, group)
-- return {
-- Identifier = title .. "_trail",
-- Parent = transforms.EarthInertial.Identifier,
-- Renderable = {
-- Type = "RenderableTrailOrbit",
-- Translation = {
-- Type = "TLETranslation",
-- Body = title,
-- Observer = transforms.EarthInertial.Identifier,
-- File = file,
-- LineNumber = lineNum
-- },
-- Color = color,
-- Period = per,
-- Resolution = 160
-- },
-- Tag = { "earth_satellite_" .. group, "earth_satellite_" .. group .. "_trail"},
-- GUI = {
-- Path = "/Solar System/Planets/Earth/Satellites"
-- }
-- }
-- end
-- -------------------------------------------------------------------------------------
function test(title, file, per, color, group)
return {
return {
Identifier = title,
Parent = transforms.EarthInertial.Identifier,
Renderable = {
Type = "ElonsTest",
Color = color,
Period = per,
Resolution = 160,
Type = "ElonsTest",
PathInfo = "bubbis",
SegmentsInfo = 1,
EccentricityColumnInfo = "bubbis",
SemiMajorAxisColumnInfo = "bubbis",
SemiMajorAxisUnitInfo = 1,
InclinationColumnInfo = "bubbis",
AscendingNodeColumnInfo = "bubbis",
ArgumentOfPeriapsisColumnInfo = "bubbis",
MeanAnomalyAtEpochColumnInfo = "bubbis",
EpochColumnInfo = "bubbis",
Translation = {
Type = "TLETranslation",
Body = title,
Observer = transforms.EarthInertial.Identifier,
File = file,
File = file
},
-- Size = 3e4,
-- Origin = "Center",
-- Body = "TLE",
-- Billboard = true,
-- Texture = textureFile
},
GUI = {
Path = "/Solar System/Planets/Earth/Satellites"
}
}
end
-- -------------------------------------------------------------------------------------
local filename = group.Url:match("([^/]+)$")
local filenameSansExt = filename:gsub(filename:match("(%.%w+)$"), "")
local path = tleFolder .. "/" .. filename
local texture = satImageFolder .. "/" .. "satB.png"
local file = io.open(path, "r")
assert(file, "File not found: " .. path)
local obj = {}
--now loop through the tle file and get each set of 3 lines
for n = 1, numLinesInFile(path), 3 do
local line = {
file:read('*l'), --title line
file:read('*l'),
file:read('*l')
}
assert(isValidTLEFileFormat(line), "TLE file syntax error on line " .. n .. ": " .. path)
-- Trim string
line[1] = line[1]:gsub("^%s*(.-)%s*$", "%1")
line[1] = line[1]:gsub("%s+", "_")
line[1] = line[1]:gsub("[%-()]", "")
local title = line[1]
-- Get period from correct location of the string
local per = tonumber(string.sub(line[3], 53, 63))
-- Trail for 2x a single revolution
per = 1.0 / per * 2.0
local satName = filenameSansExt .. "_" .. title
local shouldAddNotes = true
if openspace.hasSceneGraphNode(satName) then
if shouldAddDuplicates then
local originalSatName = satName
local i = 1
while openspace.hasSceneGraphNode(satName) do
satName = originalSatName .. "_" .. tostring(i)
i = i + 1
end
else
shouldAddNotes = false
end
end
if shouldAddNotes then
-- Register satellite object and trail
local test_var = test(satName, path, per, group.TrailColor, group.Title)
openspace.addSceneGraphNode(test_var)
table.insert(obj, test_var.Identifier)
-- local sat_var = getSat(satName, path, n, texture, group.Title)
-- openspace.addSceneGraphNode(sat_var)
-- table.insert(obj, sat_var.Identifier)
-- local satTrail_var = getSatTrail(satName, path, n, per, group.TrailColor, group.Title)
-- openspace.addSceneGraphNode(satTrail_var)
-- table.insert(obj, satTrail_var.Identifier)
end
end
return obj
end
asset.export("satImageFolder", satImageFolder)
assetHelper.registerSceneGraphNodesAndExport(asset, { Debris })
-- asset.export("satImageFolder", satImageFolder)
asset.export("downloadTLEFile", downloadTLEFile)
asset.export("addSatelliteGroupObjects", addSatelliteGroupObjects)

View File

@@ -41,7 +41,7 @@ namespace {
constexpr const char* ProgramName = "ElonsTest";
constexpr const char* _loggerCat = "SpaceDebris";
static const openspace::properties::Property::PropertyInfo PathInfo = {
"Path",
"Path",
@@ -417,13 +417,7 @@ namespace openspace {
addProperty(_nSegments);
// addProperty(_semiMajorAxisUnit);
// TLE
// documentation::testSpecificationAndThrow(
// Documentation(),
// dictionary,
// "TLETranslation"
// );
const std::string& file = dictionary.value<std::string>(KeyFile);
readTLEFile(file);
@@ -572,7 +566,7 @@ namespace openspace {
}
void ElonsTest::initialize(){
// note to self, se vad Gene skrev. Fyll _vertexArray i init och
//Fyll _vertexArray i init och
// rendera bara orbits, inga rörliga delar.
}

View File

@@ -123,8 +123,8 @@
// }
// namespace openspace {
<<<<<<< HEAD
// documentation::Documentation RenderableSatellites::Documentation() {
// using namespace documentation;
// return {
@@ -756,681 +756,3 @@
// }
// }
=======
documentation::Documentation RenderableSatellites::Documentation() {
using namespace documentation;
return {
"Renderable Kepler Orbits",
"space_renderable_kepler_orbits",
{
{
SegmentsInfo.identifier,
new DoubleVerifier,
Optional::No,
SegmentsInfo.description
},
{
PathInfo.identifier,
new StringVerifier,
Optional::No,
PathInfo.description
},
{
EccentricityColumnInfo.identifier,
new StringVerifier,
Optional::No,
EccentricityColumnInfo.description
},
{
SemiMajorAxisColumnInfo.identifier,
new StringVerifier,
Optional::No,
SemiMajorAxisColumnInfo.description
},
{
SemiMajorAxisUnitInfo.identifier,
new DoubleVerifier,
Optional::No,
SemiMajorAxisUnitInfo.description
},
{
InclinationColumnInfo.identifier,
new StringVerifier,
Optional::No,
InclinationColumnInfo.description
},
{
AscendingNodeColumnInfo.identifier,
new StringVerifier,
Optional::No,
AscendingNodeColumnInfo.description
},
{
ArgumentOfPeriapsisColumnInfo.identifier,
new StringVerifier,
Optional::No,
ArgumentOfPeriapsisColumnInfo.description
},
{
MeanAnomalyAtEpochColumnInfo.identifier,
new StringVerifier,
Optional::No,
MeanAnomalyAtEpochColumnInfo.description
},
{
EpochColumnInfo.identifier,
new StringVerifier,
Optional::No,
EpochColumnInfo.description
}
}
};
}
RenderableSatellites::RenderableSatellites(const ghoul::Dictionary& dictionary)
: Renderable(dictionary)
, _path(PathInfo)
, _nSegments(SegmentsInfo)
, _eccentricityColumnName(EccentricityColumnInfo)
, _semiMajorAxisColumnName(SemiMajorAxisColumnInfo)
, _semiMajorAxisUnit(SemiMajorAxisUnitInfo)
, _inclinationColumnName(InclinationColumnInfo)
, _ascendingNodeColumnName(AscendingNodeColumnInfo)
, _argumentOfPeriapsisColumnName(ArgumentOfPeriapsisColumnInfo)
, _meanAnomalyAtEpochColumnName(MeanAnomalyAtEpochColumnInfo)
, _epochColumnName(EpochColumnInfo)
{
documentation::testSpecificationAndThrow(
Documentation(),
dictionary,
"RenderableSatellites"
);
_nSegments =
static_cast<int>(dictionary.value<double>(SegmentsInfo.identifier));
_path =
dictionary.value<std::string>(PathInfo.identifier);
_eccentricityColumnName =
dictionary.value<std::string>(EccentricityColumnInfo.identifier);
_semiMajorAxisColumnName =
dictionary.value<std::string>(SemiMajorAxisColumnInfo.identifier);
_inclinationColumnName =
dictionary.value<std::string>(InclinationColumnInfo.identifier);
_ascendingNodeColumnName =
dictionary.value<std::string>(AscendingNodeColumnInfo.identifier);
_argumentOfPeriapsisColumnName =
dictionary.value<std::string>(ArgumentOfPeriapsisColumnInfo.identifier);
_meanAnomalyAtEpochColumnName =
dictionary.value<std::string>(MeanAnomalyAtEpochColumnInfo.identifier);
_epochColumnName =
dictionary.value<std::string>(EpochColumnInfo.identifier);
_semiMajorAxisUnit =
dictionary.value<double>(SemiMajorAxisUnitInfo.identifier);
addPropertySubOwner(_appearance);
addProperty(_path);
addProperty(_nSegments);
addProperty(_semiMajorAxisUnit);
/*
* test
*/
const std::string& file = dictionary.value<std::string>(KeyFile);
readTLEFile(file);
}
// The list of leap years only goes until 2056 as we need to touch this file then
// again anyway ;)
const std::vector<int> LeapYears = {
1956, 1960, 1964, 1968, 1972, 1976, 1980, 1984, 1988, 1992, 1996,
2000, 2004, 2008, 2012, 2016, 2020, 2024, 2028, 2032, 2036, 2040,
2044, 2048, 2052, 2056
};
// Count the number of full days since the beginning of 2000 to the beginning of
// the parameter 'year'
int countDays(int year) {
// Find the position of the current year in the vector, the difference
// between its position and the position of 2000 (for J2000) gives the
// number of leap years
constexpr const int Epoch = 2000;
constexpr const int DaysRegularYear = 365;
constexpr const int DaysLeapYear = 366;
if (year == Epoch) {
return 0;
}
// Get the position of the most recent leap year
const auto lb = std::lower_bound(LeapYears.begin(), LeapYears.end(), year);
// Get the position of the epoch
const auto y2000 = std::find(LeapYears.begin(), LeapYears.end(), Epoch);
// The distance between the two iterators gives us the number of leap years
const int nLeapYears = static_cast<int>(std::abs(std::distance(y2000, lb)));
const int nYears = std::abs(year - Epoch);
const int nRegularYears = nYears - nLeapYears;
// Get the total number of days as the sum of leap years + non leap years
const int result = nRegularYears * DaysRegularYear + nLeapYears * DaysLeapYear;
return result;
}
// Returns the number of leap seconds that lie between the {year, dayOfYear}
// time point and { 2000, 1 }
int countLeapSeconds(int year, int dayOfYear) {
// Find the position of the current year in the vector; its position in
// the vector gives the number of leap seconds
struct LeapSecond {
int year;
int dayOfYear;
bool operator<(const LeapSecond& rhs) const {
return std::tie(year, dayOfYear) < std::tie(rhs.year, rhs.dayOfYear);
}
};
const LeapSecond Epoch = { 2000, 1 };
// List taken from: https://www.ietf.org/timezones/data/leap-seconds.list
static const std::vector<LeapSecond> LeapSeconds = {
{ 1972, 1 },
{ 1972, 183 },
{ 1973, 1 },
{ 1974, 1 },
{ 1975, 1 },
{ 1976, 1 },
{ 1977, 1 },
{ 1978, 1 },
{ 1979, 1 },
{ 1980, 1 },
{ 1981, 182 },
{ 1982, 182 },
{ 1983, 182 },
{ 1985, 182 },
{ 1988, 1 },
{ 1990, 1 },
{ 1991, 1 },
{ 1992, 183 },
{ 1993, 182 },
{ 1994, 182 },
{ 1996, 1 },
{ 1997, 182 },
{ 1999, 1 },
{ 2006, 1 },
{ 2009, 1 },
{ 2012, 183 },
{ 2015, 182 },
{ 2017, 1 }
};
// Get the position of the last leap second before the desired date
LeapSecond date { year, dayOfYear };
const auto it = std::lower_bound(LeapSeconds.begin(), LeapSeconds.end(), date);
// Get the position of the Epoch
const auto y2000 = std::lower_bound(
LeapSeconds.begin(),
LeapSeconds.end(),
Epoch
);
// The distance between the two iterators gives us the number of leap years
const int nLeapSeconds = static_cast<int>(std::abs(std::distance(y2000, it)));
return nLeapSeconds;
}
double calculateSemiMajorAxis(double meanMotion) {
constexpr const double GravitationalConstant = 6.6740831e-11;
constexpr const double MassEarth = 5.9721986e24;
constexpr const double muEarth = GravitationalConstant * MassEarth;
// Use Kepler's 3rd law to calculate semimajor axis
// a^3 / P^2 = mu / (2pi)^2
// <=> a = ((mu * P^2) / (2pi^2))^(1/3)
// with a = semimajor axis
// P = period in seconds
// mu = G*M_earth
double period = std::chrono::seconds(std::chrono::hours(24)).count() / meanMotion;
const double pisq = glm::pi<double>() * glm::pi<double>();
double semiMajorAxis = pow((muEarth * period*period) / (4 * pisq), 1.0 / 3.0);
// We need the semi major axis in km instead of m
return semiMajorAxis / 1000.0;
}
double epochFromSubstring(const std::string& epochString) {
// The epochString is in the form:
// YYDDD.DDDDDDDD
// With YY being the last two years of the launch epoch, the first DDD the day
// of the year and the remaning a fractional part of the day
// The main overview of this function:
// 1. Reconstruct the full year from the YY part
// 2. Calculate the number of seconds since the beginning of the year
// 2.a Get the number of full days since the beginning of the year
// 2.b If the year is a leap year, modify the number of days
// 3. Convert the number of days to a number of seconds
// 4. Get the number of leap seconds since January 1st, 2000 and remove them
// 5. Adjust for the fact the epoch starts on 1st Januaray at 12:00:00, not
// midnight
// According to https://celestrak.com/columns/v04n03/
// Apparently, US Space Command sees no need to change the two-line element
// set format yet since no artificial earth satellites existed prior to 1957.
// By their reasoning, two-digit years from 57-99 correspond to 1957-1999 and
// those from 00-56 correspond to 2000-2056. We'll see each other again in 2057!
// 1. Get the full year
std::string yearPrefix = [y = epochString.substr(0, 2)](){
int year = std::atoi(y.c_str());
return year >= 57 ? "19" : "20";
}();
const int year = std::atoi((yearPrefix + epochString.substr(0, 2)).c_str());
const int daysSince2000 = countDays(year);
// 2.
// 2.a
double daysInYear = std::atof(epochString.substr(2).c_str());
// 2.b
const bool isInLeapYear = std::find(
LeapYears.begin(),
LeapYears.end(),
year
) != LeapYears.end();
if (isInLeapYear && daysInYear >= 60) {
// We are in a leap year, so we have an effective day more if we are
// beyond the end of february (= 31+29 days)
--daysInYear;
}
// 3
using namespace std::chrono;
const int SecondsPerDay = static_cast<int>(seconds(hours(24)).count());
//Need to subtract 1 from daysInYear since it is not a zero-based count
const double nSecondsSince2000 = (daysSince2000 + daysInYear - 1) * SecondsPerDay;
// 4
// We need to remove additionbal leap seconds past 2000 and add them prior to
// 2000 to sync up the time zones
const double nLeapSecondsOffset = -countLeapSeconds(
year,
static_cast<int>(std::floor(daysInYear))
);
// 5
const double nSecondsEpochOffset = static_cast<double>(
seconds(hours(12)).count()
);
// Combine all of the values
const double epoch = nSecondsSince2000 + nLeapSecondsOffset - nSecondsEpochOffset;
return epoch;
}
void RenderableSatellites::readTLEFile(const std::string& filename) {
ghoul_assert(FileSys.fileExists(filename), "The filename must exist");
std::ifstream file;
file.exceptions(std::ofstream::failbit | std::ofstream::badbit);
file.open(filename);
// All of the Kepler element information
struct KeplerParameters{
double inclination = 0.0;
double semiMajorAxis = 0.0;
double ascendingNode = 0.0;
double eccentricity = 0.0;
double argumentOfPeriapsis = 0.0;
double meanAnomaly = 0.0;
double meanMotion = 0.0;
double epoch = 0.0;
};
// std::vector<KeplerTranslation::KeplerOrbit> TLEData;
// int numberOfLines = std::count(std::istreambuf_iterator<char>(file),
// std::istreambuf_iterator<char>(), '\n' );
// 3 because a TLE has 3 lines per element/ object.
// int numberOfObjects = numberOfLines/3;
// LINFO("Number of data elements: " + numberOfObjects);
// for(int i=0 ; i<numberOfObjects; ++i){
// TLEData.push_back();
// }
std::string line;
while(std::getline(file, line)) {
KeplerParameters keplerElements;
std::getline(file, line);
if (line[0] == '1') {
// First line
// Field Columns Content
// 1 01-01 Line number
// 2 03-07 Satellite number
// 3 08-08 Classification (U = Unclassified)
// 4 10-11 International Designator (Last two digits of launch year)
// 5 12-14 International Designator (Launch number of the year)
// 6 15-17 International Designator(piece of the launch) A
// 7 19-20 Epoch Year(last two digits of year)
// 8 21-32 Epoch(day of the year and fractional portion of the day)
// 9 34-43 First Time Derivative of the Mean Motion divided by two
// 10 45-52 Second Time Derivative of Mean Motion divided by six
// 11 54-61 BSTAR drag term(decimal point assumed)[10] - 11606 - 4
// 12 63-63 The "Ephemeris type"
// 13 65-68 Element set number.Incremented when a new TLE is generated
// 14 69-69 Checksum (modulo 10)
keplerElements.epoch = epochFromSubstring(line.substr(18, 14));
} else {
throw ghoul::RuntimeError(fmt::format(
"File {} @ line {} does not have '1' header", filename // linNum + 1
));
}
std::getline(file, line);
if (line[0] == '2') {
// Second line
// Field Columns Content
// 1 01-01 Line number
// 2 03-07 Satellite number
// 3 09-16 Inclination (degrees)
// 4 18-25 Right ascension of the ascending node (degrees)
// 5 27-33 Eccentricity (decimal point assumed)
// 6 35-42 Argument of perigee (degrees)
// 7 44-51 Mean Anomaly (degrees)
// 8 53-63 Mean Motion (revolutions per day)
// 9 64-68 Revolution number at epoch (revolutions)
// 10 69-69 Checksum (modulo 10)
std::stringstream stream;
stream.exceptions(std::ios::failbit);
// Get inclination
stream.str(line.substr(8, 8));
stream >> keplerElements.inclination;
stream.clear();
// Get Right ascension of the ascending node
stream.str(line.substr(17, 8));
stream >> keplerElements.ascendingNode;
stream.clear();
// Get Eccentricity
stream.str("0." + line.substr(26, 7));
stream >> keplerElements.eccentricity;
stream.clear();
// Get argument of periapsis
stream.str(line.substr(34, 8));
stream >> keplerElements.argumentOfPeriapsis;
stream.clear();
// Get mean anomaly
stream.str(line.substr(43, 8));
stream >> keplerElements.meanAnomaly;
stream.clear();
// Get mean motion
stream.str(line.substr(52, 11));
stream >> keplerElements.meanMotion;
} else {
throw ghoul::RuntimeError(fmt::format(
"File {} @ line {} does not have '2' header", filename // , lineNum + 2
));
}
// Calculate the semi major axis based on the mean motion using kepler's laws
keplerElements.semiMajorAxis = calculateSemiMajorAxis(keplerElements.meanMotion);
// Converting the mean motion (revolutions per day) to period (seconds per revolution)
using namespace std::chrono;
double period = seconds(hours(24)).count() / keplerElements.meanMotion;
KeplerTranslation::KeplerOrbit TLEElements{
keplerElements.eccentricity,
keplerElements.semiMajorAxis,
keplerElements.inclination,
keplerElements.ascendingNode,
keplerElements.argumentOfPeriapsis,
keplerElements.meanAnomaly,
period,
keplerElements.epoch
};
/*
_keplerTranslator.setKeplerElements(
keplerElements.eccentricity,
keplerElements.semiMajorAxis,
keplerElements.inclination,
keplerElements.ascendingNode,
keplerElements.argumentOfPeriapsis,
keplerElements.meanAnomaly,
period,
keplerElements.epoch
);
*/
TLEData.push_back(TLEElements);
} // !while loop
file.close();
}
RenderableSatellites::~RenderableSatellites() {
}
void RenderableSatellites::initialize() {
/*
readFromCsvFile();
updateBuffers();
_path.onChange([this]() {
readFromCsvFile();
updateBuffers();
});
_semiMajorAxisUnit.onChange([this]() {
readFromCsvFile();
updateBuffers();
});
_nSegments.onChange([this]() {
updateBuffers();
});
*/
}
void RenderableSatellites::deinitialize() {
}
void RenderableSatellites::initializeGL() {
/*
glGenVertexArrays(1, &_vertexArray);
glGenBuffers(1, &_vertexBuffer);
glGenBuffers(1, &_indexBuffer);
_programObject = SpaceModule::ProgramObjectManager.request(
ProgramName,
[]() -> std::unique_ptr<ghoul::opengl::ProgramObject> {
return global::renderEngine.buildRenderProgram(
ProgramName,
absPath("${MODULE_SPACE}/shaders/RenderableKeplerOrbits_vs.glsl"),
absPath("${MODULE_SPACE}/shaders/RenderableKeplerOrbits_fs.glsl")
);
}
);
_uniformCache.opacity = _programObject->uniformLocation("opacity");
_uniformCache.modelView = _programObject->uniformLocation("modelViewTransform");
_uniformCache.projection = _programObject->uniformLocation("projectionTransform");
_uniformCache.color = _programObject->uniformLocation("color");
_uniformCache.useLineFade = _programObject->uniformLocation("useLineFade");
_uniformCache.lineFade = _programObject->uniformLocation("lineFade");
setRenderBin(Renderable::RenderBin::Overlay);
*/
}
void RenderableSatellites::deinitializeGL() {
/*
SpaceModule::ProgramObjectManager.release(ProgramName);
glDeleteBuffers(1, &_vertexBuffer);
glDeleteBuffers(1, &_indexBuffer);
glDeleteVertexArrays(1, &_vertexArray);
*/
}
bool RenderableSatellites::isReady() const {
return true;
}
void RenderableSatellites::update(const UpdateData&) {}
void RenderableSatellites::render(const RenderData& data, RendererTasks&) {
/*
_programObject->activate();
_programObject->setUniform(_uniformCache.opacity, _opacity);
glm::dmat4 modelTransform =
glm::translate(glm::dmat4(1.0), data.modelTransform.translation) *
glm::dmat4(data.modelTransform.rotation) *
glm::scale(glm::dmat4(1.0), glm::dvec3(data.modelTransform.scale));
_programObject->setUniform(
_uniformCache.modelView,
data.camera.combinedViewMatrix() * modelTransform
);
_programObject->setUniform(_uniformCache.projection, data.camera.projectionMatrix());
_programObject->setUniform(_uniformCache.color, _appearance.lineColor);
//_programObject->setUniform(_uniformCache.useLineFade, _appearance.useLineFade);
/*if (_appearance.useLineFade) {
_programObject->setUniform(_uniformCache.lineFade, _appearance.lineFade);
}*/
/*
glDepthMask(false);
//glBlendFunc(GL_SRC_ALPHA, GL_ONE);
glBindVertexArray(_vertexArray);
glDrawElements(GL_LINES,
static_cast<unsigned int>(_indexBufferData.size()),
GL_UNSIGNED_INT,
0);
glBindVertexArray(0);
_programObject->deactivate();
*/
}
void RenderableSatellites::updateBuffers() {
/*
const size_t nVerticesPerOrbit = _nSegments + 1;
_vertexBufferData.resize(TLEData.size() * nVerticesPerOrbit);
_indexBufferData.resize(TLEData.size() * _nSegments * 2);
size_t orbitIndex = 0;
size_t elementIndex = 0;
for (const auto& orbit : TLEData) {
// KeplerTranslation setKeplerElements(orbit);
_keplerTranslator.setKeplerElements(
orbit.eccentricity,
orbit.semiMajorAxis,
orbit.inclination,
orbit.ascendingNode,
orbit.argumentOfPeriapsis,
orbit.meanAnomalyAtEpoch,
orbit.period,
orbit.epoch
);
// KeplerTranslation keplerTranslation(orbit);
const double period = orbit.period();
for (size_t i = 0; i <= _nSegments; ++i) {
size_t index = orbitIndex * nVerticesPerOrbit + i;
double timeOffset = period *
static_cast<float>(i) / static_cast<float>(_nSegments);
glm::vec3 position =
_keplerTranslator.position(Time(orbit.epoch + timeOffset));
//keplerTranslation.position(orbit.epoch + timeOffset);
_vertexBufferData[index].x = position.x;
_vertexBufferData[index].y = position.y;
_vertexBufferData[index].z = position.z;
_vertexBufferData[index].time = timeOffset;
if (i > 0) {
_indexBufferData[elementIndex++] = static_cast<unsigned int>(index) - 1;
_indexBufferData[elementIndex++] = static_cast<unsigned int>(index);
}
}
++orbitIndex;
}
glBindVertexArray(_vertexArray);
glBindBuffer(GL_ARRAY_BUFFER, _vertexBuffer);
glBufferData(GL_ARRAY_BUFFER,
_vertexBufferData.size() * sizeof(TrailVBOLayout),
_vertexBufferData.data(),
GL_STATIC_DRAW
);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _indexBuffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
_indexBufferData.size() * sizeof(int),
_indexBufferData.data(),
GL_STATIC_DRAW
);
glBindVertexArray(0);
*/
}
void RenderableSatellites::readFromCsvFile() {
std::vector<std::string> columns = {
_eccentricityColumnName,
_semiMajorAxisColumnName,
_inclinationColumnName,
_ascendingNodeColumnName,
_argumentOfPeriapsisColumnName,
_meanAnomalyAtEpochColumnName,
_epochColumnName,
};
std::vector<std::vector<std::string>> data =
ghoul::loadCSVFile(_path, columns, false);
_orbits.resize(data.size());
size_t i = 0;
for (const std::vector<std::string>& line : data) {
_orbits[i++] = KeplerTranslation::KeplerOrbit{
std::stof(line[0]),
_semiMajorAxisUnit * std::stof(line[1]) / 1000.0,
std::stof(line[2]),
std::stof(line[3]),
std::stof(line[4]),
std::stof(line[5]),
std::stof(line[6])
};
}
}
}
>>>>>>> change in RenderableSatellites