Files
OpenSpace/modules/globebrowsing/chunk/chunkedlodglobe.cpp

261 lines
11 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2016 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <modules/globebrowsing/chunk/chunkedlodglobe.h>
#include <modules/globebrowsing/meshes/skirtedgrid.h>
#include <modules/globebrowsing/chunk/culling.h>
#include <modules/globebrowsing/chunk/chunklevelevaluator.h>
#include <modules/debugging/rendering/debugrenderer.h>
// open space includes
#include <openspace/engine/openspaceengine.h>
#include <openspace/rendering/renderengine.h>
#include <openspace/util/spicemanager.h>
#include <openspace/scene/scenegraphnode.h>
#include <openspace/util/time.h>
// ghoul includes
#include <ghoul/misc/assert.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include <ctime>
#include <chrono>
namespace {
const std::string _loggerCat = "ChunkLodGlobe";
}
namespace openspace {
const ChunkIndex ChunkedLodGlobe::LEFT_HEMISPHERE_INDEX = ChunkIndex(0, 0, 1);
const ChunkIndex ChunkedLodGlobe::RIGHT_HEMISPHERE_INDEX = ChunkIndex(1, 0, 1);
const GeodeticPatch ChunkedLodGlobe::COVERAGE = GeodeticPatch(0, 0, 90, 180);
ChunkedLodGlobe::ChunkedLodGlobe(
const Ellipsoid& ellipsoid,
size_t segmentsPerPatch,
std::shared_ptr<TileProviderManager> tileProviderManager)
: _ellipsoid(ellipsoid)
, _leftRoot(std::make_unique<ChunkNode>(Chunk(this, LEFT_HEMISPHERE_INDEX)))
, _rightRoot(std::make_unique<ChunkNode>(Chunk(this, RIGHT_HEMISPHERE_INDEX)))
, minSplitDepth(2)
, maxSplitDepth(22)
, _savedCamera(nullptr)
, _tileProviderManager(tileProviderManager)
, stats(StatsCollector(absPath("test_stats"), 1, StatsCollector::Enabled::No))
{
auto geometry = std::make_shared<SkirtedGrid>(
(unsigned int) segmentsPerPatch,
(unsigned int) segmentsPerPatch,
TriangleSoup::Positions::No,
TriangleSoup::TextureCoordinates::Yes,
TriangleSoup::Normals::No);
_chunkCullers.push_back(std::make_unique<HorizonCuller>());
_chunkCullers.push_back(std::make_unique<FrustumCuller>(AABB3(vec3(-1, -1, 0), vec3(1, 1, 1e35))));
_chunkEvaluatorByAvailableTiles = std::make_unique<EvaluateChunkLevelByAvailableTileData>();
_chunkEvaluatorByProjectedArea = std::make_unique<EvaluateChunkLevelByProjectedArea>();
_chunkEvaluatorByDistance = std::make_unique<EvaluateChunkLevelByDistance>();
_renderer = std::make_unique<ChunkRenderer>(geometry, tileProviderManager);
}
ChunkedLodGlobe::~ChunkedLodGlobe() {
}
bool ChunkedLodGlobe::initialize() {
return isReady();
}
bool ChunkedLodGlobe::deinitialize() {
return true;
}
bool ChunkedLodGlobe::isReady() const {
bool ready = true;
return ready;
}
std::shared_ptr<TileProviderManager> ChunkedLodGlobe::getTileProviderManager() const {
return _tileProviderManager;
}
bool ChunkedLodGlobe::testIfCullable(const Chunk& chunk, const RenderData& renderData) const {
if (debugOptions.doHorizonCulling && _chunkCullers[0]->isCullable(chunk, renderData)) {
return true;
}
if (debugOptions.doFrustumCulling && _chunkCullers[1]->isCullable(chunk, renderData)) {
return true;
}
return false;
}
const ChunkNode& ChunkedLodGlobe::findChunkNode(const Geodetic2 p) const {
ghoul_assert(COVERAGE.contains(p), "Point must be in lat [-90, 90] and lon [-180, 180]");
return p.lon < COVERAGE.center().lon ? _leftRoot->find(p) : _rightRoot->find(p);
}
ChunkNode& ChunkedLodGlobe::findChunkNode(const Geodetic2 p) {
ghoul_assert(COVERAGE.contains(p), "Point must be in lat [-90, 90] and lon [-180, 180]");
return p.lon < COVERAGE.center().lon ? _leftRoot->find(p) : _rightRoot->find(p);
}
int ChunkedLodGlobe::getDesiredLevel(const Chunk& chunk, const RenderData& renderData) const {
int desiredLevel = 0;
if (debugOptions.levelByProjAreaElseDistance) {
desiredLevel = _chunkEvaluatorByProjectedArea->getDesiredLevel(chunk, renderData);
}
else {
desiredLevel = _chunkEvaluatorByDistance->getDesiredLevel(chunk, renderData);
}
int desiredLevelByAvailableData = _chunkEvaluatorByAvailableTiles->getDesiredLevel(chunk, renderData);
if (desiredLevelByAvailableData != ChunkLevelEvaluator::UNKNOWN_DESIRED_LEVEL) {
desiredLevel = min(desiredLevel, desiredLevelByAvailableData);
}
desiredLevel = glm::clamp(desiredLevel, minSplitDepth, maxSplitDepth);
return desiredLevel;
}
void ChunkedLodGlobe::render(const RenderData& data){
stats.startNewRecord();
int j2000s = Time::now().j2000Seconds();
auto duration = std::chrono::system_clock::now().time_since_epoch();
auto millis = std::chrono::duration_cast<std::chrono::milliseconds>(duration).count();
stats.i["time"] = millis;
minDistToCamera = INFINITY;
_leftRoot->updateChunkTree(data);
_rightRoot->updateChunkTree(data);
// Calculate the MVP matrix
dmat4 viewTransform = dmat4(data.camera.combinedViewMatrix());
dmat4 vp = dmat4(data.camera.projectionMatrix()) * viewTransform;
dmat4 mvp = vp * _modelTransform;
// Render function
std::function<void(const ChunkNode&)> renderJob = [this, &data, &mvp](const ChunkNode& chunkNode) {
stats.i["chunks"]++;
const Chunk& chunk = chunkNode.getChunk();
if (chunkNode.isLeaf()){
stats.i["chunks leafs"]++;
if (chunk.isVisible()) {
stats.i["rendered chunks"]++;
double t0 = Time::now().j2000Seconds();
_renderer->renderChunk(chunkNode.getChunk(), data);
debugRenderChunk(chunk, mvp);
}
}
};
_leftRoot->reverseBreadthFirst(renderJob);
_rightRoot->reverseBreadthFirst(renderJob);
if (_savedCamera != nullptr) {
DebugRenderer::ref().renderCameraFrustum(data, *_savedCamera);
}
//LDEBUG("min distnace to camera: " << minDistToCamera);
Vec3 cameraPos = data.camera.position().dvec3();
//LDEBUG("cam pos x: " << cameraPos.x << " y: " << cameraPos.y << " z: " << cameraPos.z);
//LDEBUG("ChunkNode count: " << ChunkNode::chunkNodeCount);
//LDEBUG("RenderedPatches count: " << ChunkNode::renderedChunks);
//LDEBUG(ChunkNode::renderedChunks << " / " << ChunkNode::chunkNodeCount << " chunks rendered");
}
void ChunkedLodGlobe::debugRenderChunk(const Chunk& chunk, const glm::dmat4& mvp) const {
if (debugOptions.showChunkBounds || debugOptions.showChunkAABB) {
const std::vector<glm::dvec4> modelSpaceCorners = chunk.getBoundingPolyhedronCorners();
std::vector<glm::vec4> clippingSpaceCorners(8);
AABB3 screenSpaceBounds;
for (size_t i = 0; i < 8; i++) {
const vec4& clippingSpaceCorner = mvp * modelSpaceCorners[i];
clippingSpaceCorners[i] = clippingSpaceCorner;
vec3 screenSpaceCorner = (1.0f / clippingSpaceCorner.w) * clippingSpaceCorner.xyz();
screenSpaceBounds.expand(screenSpaceCorner);
}
unsigned int colorBits = 1 + chunk.index().level % 6;
vec4 color = vec4(colorBits & 1, colorBits & 2, colorBits & 4, 0.3);
if (debugOptions.showChunkBounds) {
DebugRenderer::ref().renderNiceBox(clippingSpaceCorners, color);
}
if (debugOptions.showChunkAABB) {
auto& screenSpacePoints = DebugRenderer::ref().verticesFor(screenSpaceBounds);
DebugRenderer::ref().renderNiceBox(screenSpacePoints, color);
}
}
}
void ChunkedLodGlobe::update(const UpdateData& data) {
glm::dmat4 translation = glm::translate(glm::dmat4(1.0), data.modelTransform.translation);
glm::dmat4 rotation = glm::dmat4(data.modelTransform.rotation);
glm::dmat4 scaling = glm::scale(glm::dmat4(1.0),
glm::dvec3(data.modelTransform.scale, data.modelTransform.scale, data.modelTransform.scale));
_modelTransform = translation * rotation * scaling;
_inverseModelTransform = glm::inverse(_modelTransform);
_renderer->update();
}
const glm::dmat4& ChunkedLodGlobe::modelTransform() {
return _modelTransform;
}
const glm::dmat4& ChunkedLodGlobe::inverseModelTransform() {
return _inverseModelTransform;
}
const Ellipsoid& ChunkedLodGlobe::ellipsoid() const
{
return _ellipsoid;
}
} // namespace openspace