Files
OpenSpace/modules/multiresvolume/rendering/localerrorhistogrammanager.cpp
Alexander Bock df543f0ec3 Cleanup of license headers
Cleanup of include guards in modules
2016-12-09 12:02:16 +01:00

491 lines
19 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2016 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <float.h>
#include <map>
#include <string.h>
#include <cmath>
#include <modules/multiresvolume/rendering/localerrorhistogrammanager.h>
#include <openspace/util/histogram.h>
#include <openspace/util/progressbar.h>
#include <ghoul/logging/logmanager.h>
namespace {
const std::string _loggerCat = "LocalErrorHistogramManager";
}
namespace openspace {
LocalErrorHistogramManager::LocalErrorHistogramManager(TSP* tsp) : _tsp(tsp) {}
LocalErrorHistogramManager::~LocalErrorHistogramManager() {}
bool LocalErrorHistogramManager::buildHistograms(int numBins) {
LINFO("Build histograms with " << numBins << " bins each");
_numBins = numBins;
_file = &(_tsp->file());
if (!_file->is_open()) {
return false;
}
_minBin = 0.0; // Should be calculated from tsp file
_maxBin = 1.0; // Should be calculated from tsp file as (maxValue - minValue)
unsigned int numOtLevels = _tsp->numOTLevels();
unsigned int numOtLeaves = pow(8, numOtLevels - 1);
unsigned int numBstLeaves = pow(2, _tsp->numBSTLevels() - 1);
_numInnerNodes = _tsp->numTotalNodes() - numOtLeaves * numBstLeaves;
_spatialHistograms = std::vector<Histogram>(_numInnerNodes);
_temporalHistograms = std::vector<Histogram>(_numInnerNodes);
for (unsigned int i = 0; i < _numInnerNodes; i++) {
_spatialHistograms[i] = Histogram(_minBin, _maxBin, numBins);
_temporalHistograms[i] = Histogram(_minBin, _maxBin, numBins);
}
// All TSP Leaves
int numOtNodes = _tsp->numOTNodes();
int otOffset = (pow(8, numOtLevels - 1) - 1) / 7;
int numBstNodes = _tsp->numBSTNodes();
int bstOffset = numBstNodes / 2;
int numberOfLeaves = numOtLeaves * numBstLeaves;
LINFO("Building spatial histograms");
ProgressBar pb1(numberOfLeaves);
int processedLeaves = 0;
pb1.print(processedLeaves);
bool success = true;
for (int bst = bstOffset; bst < numBstNodes; bst++) {
for (int ot = otOffset; ot < numOtNodes; ot++) {
success &= buildFromOctreeChild(bst, ot);
if (!success) LERROR("Failed in buildFromOctreeChild");
if (!success) return false;
pb1.print(processedLeaves++);
}
}
//pb1.stop();
LINFO("Building temporal histograms");
ProgressBar pb2(numberOfLeaves);
processedLeaves = 0;
pb2.print(processedLeaves);
for (int ot = otOffset; ot < numOtNodes; ot++) {
for (int bst = bstOffset; bst < numBstNodes; bst++) {
success &= buildFromBstChild(bst, ot);
if (!success) LERROR("Failed in buildFromBstChild");
if (!success) return false;
pb2.print(processedLeaves++);
}
}
//pb2.stop();
return success;
}
bool LocalErrorHistogramManager::buildFromOctreeChild(unsigned int bstOffset, unsigned int octreeOffset) {
// Add errors to octree parent histogram
int numOtNodes = _tsp->numOTNodes();
unsigned int childIndex = bstOffset * numOtNodes + octreeOffset;
bool isOctreeLeaf = _tsp->isOctreeLeaf(childIndex);
if (octreeOffset > 0) {
// Not octree root
std::vector<float> childValues;
std::vector<float> parentValues;
int octreeParent = parentOffset(octreeOffset, 8);
unsigned int parentIndex = bstOffset * numOtNodes + octreeParent;
unsigned int parentInnerNodeIndex = brickToInnerNodeIndex(parentIndex);
if (isOctreeLeaf) {
childValues = readValues(childIndex);
} else {
unsigned int childInnerNodeIndex = brickToInnerNodeIndex(childIndex);
auto it = _voxelCache.find(childInnerNodeIndex);
if (it != _voxelCache.end()) {
childValues = it->second;
} else {
LERROR("Child " << childIndex << " visited without cache, " << bstOffset << ", " << octreeOffset);
return false;
}
}
int octreeChildIndex = (octreeOffset - 1) % 8;
if (octreeChildIndex == 0) {
parentValues = readValues(parentIndex);
_voxelCache[parentInnerNodeIndex] = parentValues;
} else {
auto it = _voxelCache.find(parentInnerNodeIndex);
if (it != _voxelCache.end()) {
parentValues = it->second;
} else {
LERROR("Parent " << parentIndex << " visited without cache");
return false;
}
}
// Compare values and add errors to parent histogram
unsigned int paddedBrickDim = _tsp->paddedBrickDim();
unsigned int brickDim = _tsp->brickDim();
unsigned int padding = (paddedBrickDim - brickDim) / 2;
glm::vec3 parentOffset = glm::vec3(octreeChildIndex % 2, (octreeChildIndex / 2) % 2, octreeChildIndex / 4) * float(brickDim) / 2.f;
for (int z = 0; z < brickDim; z++) {
for (int y = 0; y < brickDim; y++) {
for (int x = 0; x < brickDim; x++) {
glm::vec3 childSamplePoint = glm::vec3(x, y, z) + glm::vec3(padding);
glm::vec3 parentSamplePoint = parentOffset + (glm::vec3(x, y, z) + glm::vec3(0.5)) * 0.5f;
float childValue = childValues[linearCoords(childSamplePoint)];
float parentValue = interpolate(parentSamplePoint, parentValues);
// Divide by number of child voxels that will be taken into account
float rectangleHeight = std::abs(childValue - parentValue) / 8.0;
_spatialHistograms[parentInnerNodeIndex].addRectangle(childValue, parentValue, rectangleHeight);
}
}
}
bool isLastOctreeChild = octreeOffset > 0 && octreeChildIndex == 7;
if (isLastOctreeChild) {
buildFromOctreeChild(bstOffset, octreeParent);
}
}
if (!isOctreeLeaf) {
unsigned int childInnerNodeIndex = brickToInnerNodeIndex(childIndex);
_voxelCache.erase(childInnerNodeIndex);
}
int bstChildIndex = bstOffset % 2;
bool isLastBstChild = bstOffset > 0 && bstChildIndex == 0;
if (isOctreeLeaf && isLastBstChild) {
int bstParent = parentOffset(bstOffset, 2);
buildFromOctreeChild(bstParent, octreeOffset);
}
return true;
}
bool LocalErrorHistogramManager::buildFromBstChild(unsigned int bstOffset, unsigned int octreeOffset) {
// Add errors to bst parent histogram
int numOtNodes = _tsp->numOTNodes();
unsigned int childIndex = bstOffset * numOtNodes + octreeOffset;
bool isBstLeaf = _tsp->isBstLeaf(childIndex);
if (bstOffset > 0) {
// Not BST root
std::vector<float> childValues;
std::vector<float> parentValues;
int bstParent = parentOffset(bstOffset, 2);
unsigned int parentIndex = bstParent * numOtNodes + octreeOffset;
unsigned int parentInnerNodeIndex = brickToInnerNodeIndex(parentIndex);
if (isBstLeaf) {
childValues = readValues(childIndex);
} else {
unsigned int childInnerNodeIndex = brickToInnerNodeIndex(childIndex);
auto it = _voxelCache.find(childInnerNodeIndex);
if (it != _voxelCache.end()) {
childValues = it->second;
} else {
LERROR("Child " << childIndex << " visited without cache");
return false;
}
}
int bstChildIndex = bstOffset % 2;
if (bstChildIndex == 1) {
parentValues = readValues(parentIndex);
_voxelCache[parentInnerNodeIndex] = parentValues;
} else {
auto it = _voxelCache.find(parentInnerNodeIndex);
if (it != _voxelCache.end()) {
parentValues = it->second;
} else {
LERROR("Parent " << parentIndex << " visited without cache");
return false;
}
}
// Compare values and add errors to parent histogram
unsigned int paddedBrickDim = _tsp->paddedBrickDim();
unsigned int brickDim = _tsp->brickDim();
unsigned int padding = (paddedBrickDim - brickDim) / 2;
for (int z = 0; z < brickDim; z++) {
for (int y = 0; y < brickDim; y++) {
for (int x = 0; x < brickDim; x++) {
glm::vec3 samplePoint = glm::vec3(x, y, z) + glm::vec3(padding);
unsigned int linearSamplePoint = linearCoords(samplePoint);
float childValue = childValues[linearSamplePoint];
float parentValue = parentValues[linearSamplePoint];
// Divide by number of child voxels that will be taken into account
float rectangleHeight = std::abs(childValue - parentValue) / 2.0;
_temporalHistograms[parentInnerNodeIndex].addRectangle(childValue, parentValue, rectangleHeight);
}
}
}
bool isLastBstChild = bstOffset > 0 && bstChildIndex == 0;
if (isLastBstChild) {
buildFromBstChild(bstParent, octreeOffset);
}
}
if (!isBstLeaf) {
unsigned int childInnerNodeIndex = brickToInnerNodeIndex(childIndex);
_voxelCache.erase(childInnerNodeIndex);
}
int octreeChildIndex = (octreeOffset - 1) % 8;
bool isLastOctreeChild = octreeOffset > 0 && octreeChildIndex == 7;
if (isBstLeaf && isLastOctreeChild) {
int octreeParent = parentOffset(octreeOffset, 8);
buildFromBstChild(bstOffset, octreeParent);
}
return true;
}
bool LocalErrorHistogramManager::loadFromFile(const std::string& filename) {
std::ifstream file(filename, std::ios::in | std::ios::binary);
if (!file.is_open()) {
return false;
}
file.read(reinterpret_cast<char*>(&_numInnerNodes), sizeof(int));
file.read(reinterpret_cast<char*>(&_numBins), sizeof(int));
file.read(reinterpret_cast<char*>(&_minBin), sizeof(float));
file.read(reinterpret_cast<char*>(&_maxBin), sizeof(float));
int nFloats = _numInnerNodes * _numBins;
float* histogramData = new float[nFloats];
file.read(reinterpret_cast<char*>(histogramData), sizeof(float) * nFloats);
_spatialHistograms = std::vector<Histogram>(_numInnerNodes);
for (int i = 0; i < _numInnerNodes; ++i) {
int offset = i*_numBins;
float* data = new float[_numBins];
memcpy(data, &histogramData[offset], sizeof(float) * _numBins);
_spatialHistograms[i] = Histogram(_minBin, _maxBin, _numBins, data);
}
file.read(reinterpret_cast<char*>(histogramData), sizeof(float) * nFloats);
_temporalHistograms = std::vector<Histogram>(_numInnerNodes);
for (int i = 0; i < _numInnerNodes; ++i) {
int offset = i*_numBins;
float* data = new float[_numBins];
memcpy(data, &histogramData[offset], sizeof(float) * _numBins);
_temporalHistograms[i] = Histogram(_minBin, _maxBin, _numBins, data);
}
delete[] histogramData;
// No need to deallocate histogram data, since histograms take ownership.
file.close();
return true;
}
bool LocalErrorHistogramManager::saveToFile(const std::string& filename) {
std::ofstream file(filename, std::ios::out | std::ios::binary);
if (!file.is_open()) {
return false;
}
file.write(reinterpret_cast<char*>(&_numInnerNodes), sizeof(int));
file.write(reinterpret_cast<char*>(&_numBins), sizeof(int));
file.write(reinterpret_cast<char*>(&_minBin), sizeof(float));
file.write(reinterpret_cast<char*>(&_maxBin), sizeof(float));
int nFloats = _numInnerNodes * _numBins;
float* histogramData = new float[nFloats];
for (int i = 0; i < _numInnerNodes; ++i) {
int offset = i*_numBins;
memcpy(&histogramData[offset], _spatialHistograms[i].data(), sizeof(float) * _numBins);
}
file.write(reinterpret_cast<char*>(histogramData), sizeof(float) * nFloats);
for (int i = 0; i < _numInnerNodes; ++i) {
int offset = i*_numBins;
memcpy(&histogramData[offset], _temporalHistograms[i].data(), sizeof(float) * _numBins);
}
file.write(reinterpret_cast<char*>(histogramData), sizeof(float) * nFloats);
delete[] histogramData;
file.close();
return true;
}
unsigned int LocalErrorHistogramManager::linearCoords(glm::vec3 coords) const {
return linearCoords(glm::ivec3(coords));
}
unsigned int LocalErrorHistogramManager::linearCoords(int x, int y, int z) const {
return linearCoords(glm::ivec3(x, y, z));
}
unsigned int LocalErrorHistogramManager::linearCoords(glm::ivec3 coords) const {
unsigned int paddedBrickDim = _tsp->paddedBrickDim();
return coords.z * paddedBrickDim * paddedBrickDim + coords.y * paddedBrickDim + coords.x;
}
float LocalErrorHistogramManager::interpolate(glm::vec3 samplePoint, const std::vector<float>& voxels) const {
int lowX = samplePoint.x;
int lowY = samplePoint.y;
int lowZ = samplePoint.z;
int highX = ceil(samplePoint.x);
int highY = ceil(samplePoint.y);
int highZ = ceil(samplePoint.z);
float interpolatorX = 1.0 - (samplePoint.x - lowX);
float interpolatorY = 1.0 - (samplePoint.y - lowY);
float interpolatorZ = 1.0 - (samplePoint.z - lowZ);
float v000 = voxels[linearCoords(lowX, lowY, lowZ)];
float v001 = voxels[linearCoords(lowX, lowY, highZ)];
float v010 = voxels[linearCoords(lowX, highY, lowZ)];
float v011 = voxels[linearCoords(lowX, highY, highZ)];
float v100 = voxels[linearCoords(highX, lowY, lowZ)];
float v101 = voxels[linearCoords(highX, lowY, highZ)];
float v110 = voxels[linearCoords(highX, highY, lowZ)];
float v111 = voxels[linearCoords(highX, highY, highZ)];
float v00 = interpolatorZ * v000 + (1.0 - interpolatorZ) * v001;
float v01 = interpolatorZ * v010 + (1.0 - interpolatorZ) * v011;
float v10 = interpolatorZ * v100 + (1.0 - interpolatorZ) * v101;
float v11 = interpolatorZ * v110 + (1.0 - interpolatorZ) * v111;
float v0 = interpolatorY * v00 + (1.0 - interpolatorY) * v01;
float v1 = interpolatorY * v10 + (1.0 - interpolatorY) * v11;
return interpolatorX * v0 + (1.0 - interpolatorX) * v1;
}
const Histogram* LocalErrorHistogramManager::getSpatialHistogram(unsigned int brickIndex) const {
unsigned int innerNodeIndex = brickToInnerNodeIndex(brickIndex);
if (innerNodeIndex < _numInnerNodes) {
return &(_spatialHistograms[innerNodeIndex]);
} else {
return nullptr;
}
}
const Histogram* LocalErrorHistogramManager::getTemporalHistogram(unsigned int brickIndex) const {
unsigned int innerNodeIndex = brickToInnerNodeIndex(brickIndex);
if (innerNodeIndex < _numInnerNodes) {
return &(_temporalHistograms[innerNodeIndex]);
} else {
return nullptr;
}
}
int LocalErrorHistogramManager::parentOffset(int offset, int base) const {
if (offset == 0) {
return -1;
}
int depth = floor(log(((base - 1) * offset + 1.0)) / log(base));
int firstInLevel = (pow(base, depth) - 1) / (base - 1);
int inLevelOffset = offset - firstInLevel;
int parentDepth = depth - 1;
int firstInParentLevel = (pow(base, parentDepth) - 1) / (base - 1);
int parentInLevelOffset = inLevelOffset / base;
int parentOffset = firstInParentLevel + parentInLevelOffset;
return parentOffset;
}
std::vector<float> LocalErrorHistogramManager::readValues(unsigned int brickIndex) const {
unsigned int paddedBrickDim = _tsp->paddedBrickDim();
unsigned int numBrickVals = paddedBrickDim * paddedBrickDim * paddedBrickDim;
std::vector<float> voxelValues(numBrickVals);
std::streampos offset = _tsp->dataPosition() + static_cast<long long>(brickIndex*numBrickVals*sizeof(float));
_file->seekg(offset);
_file->read(reinterpret_cast<char*>(&voxelValues[0]),
static_cast<size_t>(numBrickVals)*sizeof(float));
return voxelValues;
}
unsigned int LocalErrorHistogramManager::brickToInnerNodeIndex(unsigned int brickIndex) const {
unsigned int numOtNodes = _tsp->numOTNodes();
unsigned int numBstLevels = _tsp->numBSTLevels();
unsigned int numInnerBstNodes = (pow(2, numBstLevels - 1) - 1) * numOtNodes;
if (brickIndex < numInnerBstNodes) return brickIndex;
unsigned int numOtLeaves = pow(8, _tsp->numOTLevels() - 1);
unsigned int numOtInnerNodes = (numOtNodes - numOtLeaves);
unsigned int innerBstOffset = brickIndex - numInnerBstNodes;
unsigned int rowIndex = innerBstOffset / numOtNodes;
unsigned int indexInRow = innerBstOffset % numOtNodes;
if (indexInRow >= numOtInnerNodes) return _numInnerNodes;
unsigned int offset = rowIndex * numOtInnerNodes;
unsigned int leavesOffset = offset + indexInRow;
return numInnerBstNodes + leavesOffset;
}
unsigned int LocalErrorHistogramManager::innerNodeToBrickIndex(unsigned int innerNodeIndex) const {
unsigned int numOtNodes = _tsp->numOTNodes();
unsigned int numBstLevels = _tsp->numBSTLevels();
unsigned int numInnerBstNodes = (pow(2, numBstLevels - 1) - 1) * numOtNodes;
if (innerNodeIndex < numInnerBstNodes) return innerNodeIndex;
unsigned int numOtLeaves = pow(8, _tsp->numOTLevels() - 1);
unsigned int numOtInnerNodes = (numOtNodes - numOtLeaves);
unsigned int innerBstOffset = innerNodeIndex - numInnerBstNodes;
unsigned int rowIndex = innerBstOffset / numOtInnerNodes;
unsigned int indexInRow = innerBstOffset % numOtInnerNodes;
unsigned int offset = rowIndex * numOtNodes;
unsigned int leavesOffset = offset + indexInRow;
return numInnerBstNodes + leavesOffset;
}
} // namespace openspace