Files
computer/libs/python/agent/README.md
2025-07-28 10:17:04 -04:00

381 lines
10 KiB
Markdown

<div align="center">
<h1>
<div class="image-wrapper" style="display: inline-block;">
<picture>
<source media="(prefers-color-scheme: dark)" alt="logo" height="150" srcset="../../../img/logo_white.png" style="display: block; margin: auto;">
<source media="(prefers-color-scheme: light)" alt="logo" height="150" srcset="../../../img/logo_black.png" style="display: block; margin: auto;">
<img alt="Shows my svg">
</picture>
</div>
[![Python](https://img.shields.io/badge/Python-333333?logo=python&logoColor=white&labelColor=333333)](#)
[![macOS](https://img.shields.io/badge/macOS-000000?logo=apple&logoColor=F0F0F0)](#)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?&logo=discord&logoColor=white)](https://discord.com/invite/mVnXXpdE85)
[![PyPI](https://img.shields.io/pypi/v/cua-computer?color=333333)](https://pypi.org/project/cua-computer/)
</h1>
</div>
**cua-agent** is a general Computer-Use framework with liteLLM integration for running agentic workflows on macOS, Windows, and Linux sandboxes. It provides a unified interface for computer-use agents across multiple LLM providers with advanced callback system for extensibility.
## Features
- **Safe Computer-Use/Tool-Use**: Using Computer SDK for sandboxed desktops
- **Multi-Agent Support**: Anthropic Claude, OpenAI computer-use-preview, UI-TARS, Omniparser + any LLM
- **Multi-API Support**: Take advantage of liteLLM supporting 100+ LLMs / model APIs, including local models (`huggingface-local/`, `ollama_chat/`, `mlx/`)
- **Cross-Platform**: Works on Windows, macOS, and Linux with cloud and local computer instances
- **Extensible Callbacks**: Built-in support for image retention, cache control, PII anonymization, budget limits, and trajectory tracking
## Install
```bash
pip install "cua-agent[all]"
# or install specific providers
pip install "cua-agent[openai]" # OpenAI computer-use-preview support
pip install "cua-agent[anthropic]" # Anthropic Claude support
pip install "cua-agent[omni]" # Omniparser + any LLM support
pip install "cua-agent[uitars]" # UI-TARS
pip install "cua-agent[uitars-mlx]" # UI-TARS + MLX support
pip install "cua-agent[uitars-hf]" # UI-TARS + Huggingface support
pip install "cua-agent[ui]" # Gradio UI support
```
## Quick Start
```python
import asyncio
import os
from agent import ComputerAgent
from computer import Computer
async def main():
# Set up computer instance
async with Computer(
os_type="linux",
provider_type="cloud",
name=os.getenv("CUA_CONTAINER_NAME"),
api_key=os.getenv("CUA_API_KEY")
) as computer:
# Create agent
agent = ComputerAgent(
model="anthropic/claude-3-5-sonnet-20241022",
tools=[computer],
only_n_most_recent_images=3,
trajectory_dir="trajectories",
max_trajectory_budget=5.0 # $5 budget limit
)
# Run agent
messages = [{"role": "user", "content": "Take a screenshot and tell me what you see"}]
async for result in agent.run(messages):
for item in result["output"]:
if item["type"] == "message":
print(item["content"][0]["text"])
if __name__ == "__main__":
asyncio.run(main())
```
## Supported Models
### Anthropic Claude (Computer Use API)
```python
model="anthropic/claude-3-5-sonnet-20241022"
model="anthropic/claude-3-5-sonnet-20240620"
model="anthropic/claude-opus-4-20250514"
model="anthropic/claude-sonnet-4-20250514"
```
### OpenAI Computer Use Preview
```python
model="openai/computer-use-preview"
```
### UI-TARS (Local or Huggingface Inference)
```python
model="huggingface-local/ByteDance-Seed/UI-TARS-1.5-7B"
model="ollama_chat/0000/ui-tars-1.5-7b"
```
### Omniparser + Any LLM
```python
model="omniparser+ollama_chat/mistral-small3.2"
model="omniparser+vertex_ai/gemini-pro"
model="omniparser+anthropic/claude-3-5-sonnet-20241022"
model="omniparser+openai/gpt-4o"
```
## Custom Tools
Define custom tools using decorated functions:
```python
from computer.helpers import sandboxed
@sandboxed()
def read_file(location: str) -> str:
"""Read contents of a file
Parameters
----------
location : str
Path to the file to read
Returns
-------
str
Contents of the file or error message
"""
try:
with open(location, 'r') as f:
return f.read()
except Exception as e:
return f"Error reading file: {str(e)}"
def calculate(a: int, b: int) -> int:
"""Calculate the sum of two integers"""
return a + b
# Use with agent
agent = ComputerAgent(
model="anthropic/claude-3-5-sonnet-20241022",
tools=[computer, read_file, calculate]
)
```
## Callbacks System
agent provides a comprehensive callback system for extending functionality:
### Built-in Callbacks
```python
from agent.callbacks import (
ImageRetentionCallback,
TrajectorySaverCallback,
BudgetManagerCallback,
LoggingCallback
)
agent = ComputerAgent(
model="anthropic/claude-3-5-sonnet-20241022",
tools=[computer],
callbacks=[
ImageRetentionCallback(only_n_most_recent_images=3),
TrajectorySaverCallback(trajectory_dir="trajectories"),
BudgetManagerCallback(max_budget=10.0, raise_error=True),
LoggingCallback(level=logging.INFO)
]
)
```
### Custom Callbacks
```python
from agent.callbacks.base import AsyncCallbackHandler
class CustomCallback(AsyncCallbackHandler):
async def on_llm_start(self, messages):
"""Preprocess messages before LLM call"""
# Add custom preprocessing logic
return messages
async def on_llm_end(self, messages):
"""Postprocess messages after LLM call"""
# Add custom postprocessing logic
return messages
async def on_usage(self, usage):
"""Track usage information"""
print(f"Tokens used: {usage.total_tokens}")
```
## Budget Management
Control costs with built-in budget management:
```python
# Simple budget limit
agent = ComputerAgent(
model="anthropic/claude-3-5-sonnet-20241022",
max_trajectory_budget=5.0 # $5 limit
)
# Advanced budget configuration
agent = ComputerAgent(
model="anthropic/claude-3-5-sonnet-20241022",
max_trajectory_budget={
"max_budget": 10.0,
"raise_error": True, # Raise error when exceeded
"reset_after_each_run": False # Persistent across runs
}
)
```
## Trajectory Management
Save and replay agent conversations:
```python
agent = ComputerAgent(
model="anthropic/claude-3-5-sonnet-20241022",
trajectory_dir="trajectories", # Auto-save trajectories
tools=[computer]
)
# Trajectories are saved with:
# - Complete conversation history
# - Usage statistics and costs
# - Timestamps and metadata
# - Screenshots and computer actions
```
## Configuration Options
### ComputerAgent Parameters
- `model`: Model identifier (required)
- `tools`: List of computer objects and decorated functions
- `callbacks`: List of callback handlers for extensibility
- `only_n_most_recent_images`: Limit recent images to prevent context overflow
- `verbosity`: Logging level (logging.INFO, logging.DEBUG, etc.)
- `trajectory_dir`: Directory to save conversation trajectories
- `max_retries`: Maximum API call retries (default: 3)
- `screenshot_delay`: Delay between actions and screenshots (default: 0.5s)
- `use_prompt_caching`: Enable prompt caching for supported models
- `max_trajectory_budget`: Budget limit configuration
### Environment Variables
```bash
# Computer instance (cloud)
export CUA_CONTAINER_NAME="your-container-name"
export CUA_API_KEY="your-cua-api-key"
# LLM API keys
export ANTHROPIC_API_KEY="your-anthropic-key"
export OPENAI_API_KEY="your-openai-key"
```
## Advanced Usage
### Streaming Responses
```python
async for result in agent.run(messages, stream=True):
# Process streaming chunks
for item in result["output"]:
if item["type"] == "message":
print(item["content"][0]["text"], end="", flush=True)
elif item["type"] == "computer_call":
action = item["action"]
print(f"\n[Action: {action['type']}]")
```
### Interactive Chat Loop
```python
history = []
while True:
user_input = input("> ")
if user_input.lower() in ['quit', 'exit']:
break
history.append({"role": "user", "content": user_input})
async for result in agent.run(history):
history += result["output"]
# Display assistant responses
for item in result["output"]:
if item["type"] == "message":
print(item["content"][0]["text"])
```
### Error Handling
```python
try:
async for result in agent.run(messages):
# Process results
pass
except BudgetExceededException:
print("Budget limit exceeded")
except Exception as e:
print(f"Agent error: {e}")
```
## API Reference
### ComputerAgent.run()
```python
async def run(
self,
messages: Messages,
stream: bool = False,
**kwargs
) -> AsyncGenerator[Dict[str, Any], None]:
"""
Run the agent with the given messages.
Args:
messages: List of message dictionaries
stream: Whether to stream the response
**kwargs: Additional arguments
Returns:
AsyncGenerator that yields response chunks
"""
```
### Message Format
```python
messages = [
{
"role": "user",
"content": "Take a screenshot and describe what you see"
},
{
"role": "assistant",
"content": "I'll take a screenshot for you."
}
]
```
### Response Format
```python
{
"output": [
{
"type": "message",
"role": "assistant",
"content": [{"type": "output_text", "text": "I can see..."}]
},
{
"type": "computer_call",
"action": {"type": "screenshot"},
"call_id": "call_123"
},
{
"type": "computer_call_output",
"call_id": "call_123",
"output": {"image_url": "data:image/png;base64,..."}
}
],
"usage": {
"prompt_tokens": 150,
"completion_tokens": 75,
"total_tokens": 225,
"response_cost": 0.01,
}
}
```
## License
MIT License - see LICENSE file for details.