dcparser: move Python-specific code to extension files

We can now build dcparser without linking to Python and dcparse.exe's dependency on pystub is removed.

Co-authored-by: rdb <git@rdb.name>
This commit is contained in:
Sam Edwards
2019-08-23 11:37:11 +02:00
committed by rdb
parent 36df3bdf0b
commit 6c3013a29c
18 changed files with 1790 additions and 1612 deletions

View File

@@ -16,25 +16,13 @@
#include "dcAtomicField.h"
#include "hashGenerator.h"
#include "dcindent.h"
#include "dcmsgtypes.h"
#include "datagram.h"
#include "datagramIterator.h"
#include "dcClassParameter.h"
#include <algorithm>
#ifdef HAVE_PYTHON
#include "py_panda.h"
#endif
using std::ostream;
using std::ostringstream;
using std::string;
#ifdef WITHIN_PANDA
#include "pStatTimer.h"
#ifndef CPPPARSER
PStatCollector DCClass::_update_pcollector("App:Show code:readerPollTask:Update");
PStatCollector DCClass::_generate_pcollector("App:Show code:readerPollTask:Generate");
@@ -89,10 +77,7 @@ DCClass(DCFile *dc_file, const string &name, bool is_struct, bool bogus_class) :
_number = -1;
_constructor = nullptr;
#ifdef HAVE_PYTHON
_class_def = nullptr;
_owner_class_def = nullptr;
#endif
_python_class_defs = nullptr;
}
/**
@@ -108,11 +93,6 @@ DCClass::
for (fi = _fields.begin(); fi != _fields.end(); ++fi) {
delete (*fi);
}
#ifdef HAVE_PYTHON
Py_XDECREF(_class_def);
Py_XDECREF(_owner_class_def);
#endif
}
/**
@@ -338,7 +318,7 @@ inherits_from_bogus_class() const {
* Write a string representation of this instance to <out>.
*/
void DCClass::
output(ostream &out) const {
output(std::ostream &out) const {
if (_is_struct) {
out << "struct";
} else {
@@ -349,678 +329,11 @@ output(ostream &out) const {
}
}
#ifdef HAVE_PYTHON
/**
* Returns true if the DCClass object has an associated Python class
* definition, false otherwise.
*/
bool DCClass::
has_class_def() const {
return (_class_def != nullptr);
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Sets the class object associated with this DistributedClass. This object
* will be used to construct new instances of the class.
*/
void DCClass::
set_class_def(PyObject *class_def) {
Py_XINCREF(class_def);
Py_XDECREF(_class_def);
_class_def = class_def;
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Returns the class object that was previously associated with this
* DistributedClass. This will return a new reference to the object.
*/
PyObject *DCClass::
get_class_def() const {
if (_class_def == nullptr) {
Py_INCREF(Py_None);
return Py_None;
}
Py_INCREF(_class_def);
return _class_def;
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Returns true if the DCClass object has an associated Python owner class
* definition, false otherwise.
*/
bool DCClass::
has_owner_class_def() const {
return (_owner_class_def != nullptr);
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Sets the owner class object associated with this DistributedClass. This
* object will be used to construct new owner instances of the class.
*/
void DCClass::
set_owner_class_def(PyObject *owner_class_def) {
Py_XINCREF(owner_class_def);
Py_XDECREF(_owner_class_def);
_owner_class_def = owner_class_def;
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Returns the owner class object that was previously associated with this
* DistributedClass. This will return a new reference to the object.
*/
PyObject *DCClass::
get_owner_class_def() const {
if (_owner_class_def == nullptr) {
Py_INCREF(Py_None);
return Py_None;
}
Py_INCREF(_owner_class_def);
return _owner_class_def;
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Extracts the update message out of the packer and applies it to the
* indicated object by calling the appropriate method.
*/
void DCClass::
receive_update(PyObject *distobj, DatagramIterator &di) const {
#ifdef WITHIN_PANDA
PStatTimer timer(((DCClass *)this)->_class_update_pcollector);
#endif
DCPacker packer;
const char *data = (const char *)di.get_datagram().get_data();
packer.set_unpack_data(data + di.get_current_index(),
di.get_remaining_size(), false);
int field_id = packer.raw_unpack_uint16();
DCField *field = get_field_by_index(field_id);
if (field == nullptr) {
ostringstream strm;
strm
<< "Received update for field " << field_id << ", not in class "
<< get_name();
nassert_raise(strm.str());
return;
}
packer.begin_unpack(field);
field->receive_update(packer, distobj);
packer.end_unpack();
di.skip_bytes(packer.get_num_unpacked_bytes());
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Processes a big datagram that includes all of the "required" fields that
* are sent along with a normal "generate with required" message. This is all
* of the atomic fields that are marked "broadcast required".
*/
void DCClass::
receive_update_broadcast_required(PyObject *distobj, DatagramIterator &di) const {
#ifdef WITHIN_PANDA
PStatTimer timer(((DCClass *)this)->_class_update_pcollector);
#endif
DCPacker packer;
const char *data = (const char *)di.get_datagram().get_data();
packer.set_unpack_data(data + di.get_current_index(),
di.get_remaining_size(), false);
int num_fields = get_num_inherited_fields();
for (int i = 0; i < num_fields && !PyErr_Occurred(); ++i) {
DCField *field = get_inherited_field(i);
if (field->as_molecular_field() == nullptr &&
field->is_required() && field->is_broadcast()) {
packer.begin_unpack(field);
field->receive_update(packer, distobj);
if (!packer.end_unpack()) {
break;
}
}
}
di.skip_bytes(packer.get_num_unpacked_bytes());
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Processes a big datagram that includes all of the "required" fields that
* are sent along with a normal "generate with required" message. This is all
* of the atomic fields that are marked "broadcast ownrecv". Should be used
* for 'owner-view' objects.
*/
void DCClass::
receive_update_broadcast_required_owner(PyObject *distobj,
DatagramIterator &di) const {
#ifdef WITHIN_PANDA
PStatTimer timer(((DCClass *)this)->_class_update_pcollector);
#endif
DCPacker packer;
const char *data = (const char *)di.get_datagram().get_data();
packer.set_unpack_data(data + di.get_current_index(),
di.get_remaining_size(), false);
int num_fields = get_num_inherited_fields();
for (int i = 0; i < num_fields && !PyErr_Occurred(); ++i) {
DCField *field = get_inherited_field(i);
if (field->as_molecular_field() == nullptr &&
field->is_required() && (field->is_ownrecv() || field->is_broadcast())) {
packer.begin_unpack(field);
field->receive_update(packer, distobj);
if (!packer.end_unpack()) {
break;
}
}
}
di.skip_bytes(packer.get_num_unpacked_bytes());
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Processes a big datagram that includes all of the "required" fields that
* are sent when an avatar is created. This is all of the atomic fields that
* are marked "required", whether they are broadcast or not.
*/
void DCClass::
receive_update_all_required(PyObject *distobj, DatagramIterator &di) const {
#ifdef WITHIN_PANDA
PStatTimer timer(((DCClass *)this)->_class_update_pcollector);
#endif
DCPacker packer;
const char *data = (const char *)di.get_datagram().get_data();
packer.set_unpack_data(data + di.get_current_index(),
di.get_remaining_size(), false);
int num_fields = get_num_inherited_fields();
for (int i = 0; i < num_fields && !PyErr_Occurred(); ++i) {
DCField *field = get_inherited_field(i);
if (field->as_molecular_field() == nullptr &&
field->is_required()) {
packer.begin_unpack(field);
field->receive_update(packer, distobj);
if (!packer.end_unpack()) {
break;
}
}
}
di.skip_bytes(packer.get_num_unpacked_bytes());
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Processes a datagram that lists some additional fields that are broadcast
* in one chunk.
*/
void DCClass::
receive_update_other(PyObject *distobj, DatagramIterator &di) const {
#ifdef WITHIN_PANDA
PStatTimer timer(((DCClass *)this)->_class_update_pcollector);
#endif
int num_fields = di.get_uint16();
for (int i = 0; i < num_fields && !PyErr_Occurred(); ++i) {
receive_update(distobj, di);
}
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Processes an update for a named field from a packed value blob.
*/
void DCClass::
direct_update(PyObject *distobj, const string &field_name,
const vector_uchar &value_blob) {
DCField *field = get_field_by_name(field_name);
nassertv_always(field != nullptr);
DCPacker packer;
packer.set_unpack_data(value_blob);
packer.begin_unpack(field);
field->receive_update(packer, distobj);
packer.end_unpack();
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Processes an update for a named field from a packed datagram.
*/
void DCClass::
direct_update(PyObject *distobj, const string &field_name,
const Datagram &datagram) {
DCField *field = get_field_by_name(field_name);
nassertv_always(field != nullptr);
DCPacker packer;
packer.set_unpack_data((const char *)datagram.get_data(), datagram.get_length(), false);
packer.begin_unpack(field);
field->receive_update(packer, distobj);
packer.end_unpack();
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Looks up the current value of the indicated field by calling the
* appropriate get*() function, then packs that value into the datagram. This
* field is presumably either a required field or a specified optional field,
* and we are building up a datagram for the generate-with-required message.
*
* Returns true on success, false on failure.
*/
bool DCClass::
pack_required_field(Datagram &datagram, PyObject *distobj,
const DCField *field) const {
DCPacker packer;
packer.begin_pack(field);
if (!pack_required_field(packer, distobj, field)) {
return false;
}
if (!packer.end_pack()) {
return false;
}
datagram.append_data(packer.get_data(), packer.get_length());
return true;
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Looks up the current value of the indicated field by calling the
* appropriate get*() function, then packs that value into the packer. This
* field is presumably either a required field or a specified optional field,
* and we are building up a datagram for the generate-with-required message.
*
* Returns true on success, false on failure.
*/
bool DCClass::
pack_required_field(DCPacker &packer, PyObject *distobj,
const DCField *field) const {
const DCParameter *parameter = field->as_parameter();
if (parameter != nullptr) {
// This is the easy case: to pack a parameter, we just look on the class
// object for the data element.
string field_name = field->get_name();
if (!PyObject_HasAttrString(distobj, (char *)field_name.c_str())) {
// If the attribute is not defined, but the field has a default value
// specified, quietly pack the default value.
if (field->has_default_value()) {
packer.pack_default_value();
return true;
}
// If there is no default value specified, it's an error.
ostringstream strm;
strm << "Data element " << field_name
<< ", required by dc file for dclass " << get_name()
<< ", not defined on object";
nassert_raise(strm.str());
return false;
}
PyObject *result =
PyObject_GetAttrString(distobj, (char *)field_name.c_str());
nassertr(result != nullptr, false);
// Now pack the value into the datagram.
bool pack_ok = parameter->pack_args(packer, result);
Py_DECREF(result);
return pack_ok;
}
if (field->as_molecular_field() != nullptr) {
ostringstream strm;
strm << "Cannot pack molecular field " << field->get_name()
<< " for generate";
nassert_raise(strm.str());
return false;
}
const DCAtomicField *atom = field->as_atomic_field();
nassertr(atom != nullptr, false);
// We need to get the initial value of this field. There isn't a good,
// robust way to get this; presently, we just mangle the "setFoo()" name of
// the required field into "getFoo()" and call that.
string setter_name = atom->get_name();
if (setter_name.empty()) {
ostringstream strm;
strm << "Required field is unnamed!";
nassert_raise(strm.str());
return false;
}
if (atom->get_num_elements() == 0) {
// It sure doesn't make sense to have a required field with no parameters.
// What data, exactly, is required?
ostringstream strm;
strm << "Required field " << setter_name << " has no parameters!";
nassert_raise(strm.str());
return false;
}
string getter_name = setter_name;
if (setter_name.substr(0, 3) == "set") {
// If the original method started with "set", we mangle this directly to
// "get".
getter_name[0] = 'g';
} else {
// Otherwise, we add a "get" prefix, and capitalize the next letter.
getter_name = "get" + setter_name;
getter_name[3] = toupper(getter_name[3]);
}
// Now we have to look up the getter on the distributed object and call it.
if (!PyObject_HasAttrString(distobj, (char *)getter_name.c_str())) {
// As above, if there's no getter but the field has a default value
// specified, quietly pack the default value.
if (field->has_default_value()) {
packer.pack_default_value();
return true;
}
// Otherwise, with no default value it's an error.
ostringstream strm;
strm << "Distributed class " << get_name()
<< " doesn't have getter named " << getter_name
<< " to match required field " << setter_name;
nassert_raise(strm.str());
return false;
}
PyObject *func =
PyObject_GetAttrString(distobj, (char *)getter_name.c_str());
nassertr(func != nullptr, false);
PyObject *empty_args = PyTuple_New(0);
PyObject *result = PyObject_CallObject(func, empty_args);
Py_DECREF(empty_args);
Py_DECREF(func);
if (result == nullptr) {
// We don't set this as an exception, since presumably the Python method
// itself has already triggered a Python exception.
std::cerr << "Error when calling " << getter_name << "\n";
return false;
}
if (atom->get_num_elements() == 1) {
// In this case, we expect the getter to return one object, which we wrap
// up in a tuple.
PyObject *tuple = PyTuple_New(1);
PyTuple_SET_ITEM(tuple, 0, result);
result = tuple;
} else {
// Otherwise, it had better already be a sequence or tuple of some sort.
if (!PySequence_Check(result)) {
ostringstream strm;
strm << "Since dclass " << get_name() << " method " << setter_name
<< " is declared to have multiple parameters, Python function "
<< getter_name << " must return a list or tuple.\n";
nassert_raise(strm.str());
return false;
}
}
// Now pack the arguments into the datagram.
bool pack_ok = atom->pack_args(packer, result);
Py_DECREF(result);
return pack_ok;
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Generates a datagram containing the message necessary to send an update for
* the indicated distributed object from the client.
*/
Datagram DCClass::
client_format_update(const string &field_name, DOID_TYPE do_id,
PyObject *args) const {
DCField *field = get_field_by_name(field_name);
if (field == nullptr) {
ostringstream strm;
strm << "No field named " << field_name << " in class " << get_name()
<< "\n";
nassert_raise(strm.str());
return Datagram();
}
return field->client_format_update(do_id, args);
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Generates a datagram containing the message necessary to send an update for
* the indicated distributed object from the AI.
*/
Datagram DCClass::
ai_format_update(const string &field_name, DOID_TYPE do_id,
CHANNEL_TYPE to_id, CHANNEL_TYPE from_id, PyObject *args) const {
DCField *field = get_field_by_name(field_name);
if (field == nullptr) {
ostringstream strm;
strm << "No field named " << field_name << " in class " << get_name()
<< "\n";
nassert_raise(strm.str());
return Datagram();
}
return field->ai_format_update(do_id, to_id, from_id, args);
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Generates a datagram containing the message necessary to send an update,
* using the indicated msg type for the indicated distributed object from the
* AI.
*/
Datagram DCClass::
ai_format_update_msg_type(const string &field_name, DOID_TYPE do_id,
CHANNEL_TYPE to_id, CHANNEL_TYPE from_id, int msg_type, PyObject *args) const {
DCField *field = get_field_by_name(field_name);
if (field == nullptr) {
ostringstream strm;
strm << "No field named " << field_name << " in class " << get_name()
<< "\n";
nassert_raise(strm.str());
return Datagram();
}
return field->ai_format_update_msg_type(do_id, to_id, from_id, msg_type, args);
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Generates a datagram containing the message necessary to generate a new
* distributed object from the client. This requires querying the object for
* the initial value of its required fields.
*
* optional_fields is a list of fieldNames to generate in addition to the
* normal required fields.
*
* This method is only called by the CMU implementation.
*/
Datagram DCClass::
client_format_generate_CMU(PyObject *distobj, DOID_TYPE do_id,
ZONEID_TYPE zone_id,
PyObject *optional_fields) const {
DCPacker packer;
packer.raw_pack_uint16(CLIENT_OBJECT_GENERATE_CMU);
packer.raw_pack_uint32(zone_id);
packer.raw_pack_uint16(_number);
packer.raw_pack_uint32(do_id);
// Specify all of the required fields.
int num_fields = get_num_inherited_fields();
for (int i = 0; i < num_fields; ++i) {
DCField *field = get_inherited_field(i);
if (field->is_required() && field->as_molecular_field() == nullptr) {
packer.begin_pack(field);
if (!pack_required_field(packer, distobj, field)) {
return Datagram();
}
packer.end_pack();
}
}
// Also specify the optional fields.
int num_optional_fields = 0;
if (PyObject_IsTrue(optional_fields)) {
num_optional_fields = PySequence_Size(optional_fields);
}
packer.raw_pack_uint16(num_optional_fields);
for (int i = 0; i < num_optional_fields; i++) {
PyObject *py_field_name = PySequence_GetItem(optional_fields, i);
#if PY_MAJOR_VERSION >= 3
string field_name = PyUnicode_AsUTF8(py_field_name);
#else
string field_name = PyString_AsString(py_field_name);
#endif
Py_XDECREF(py_field_name);
DCField *field = get_field_by_name(field_name);
if (field == nullptr) {
ostringstream strm;
strm << "No field named " << field_name << " in class " << get_name()
<< "\n";
nassert_raise(strm.str());
return Datagram();
}
packer.raw_pack_uint16(field->get_number());
packer.begin_pack(field);
if (!pack_required_field(packer, distobj, field)) {
return Datagram();
}
packer.end_pack();
}
return Datagram(packer.get_data(), packer.get_length());
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Generates a datagram containing the message necessary to generate a new
* distributed object from the AI. This requires querying the object for the
* initial value of its required fields.
*
* optional_fields is a list of fieldNames to generate in addition to the
* normal required fields.
*/
Datagram DCClass::
ai_format_generate(PyObject *distobj, DOID_TYPE do_id,
DOID_TYPE parent_id, ZONEID_TYPE zone_id,
CHANNEL_TYPE district_channel_id, CHANNEL_TYPE from_channel_id,
PyObject *optional_fields) const {
DCPacker packer;
packer.raw_pack_uint8(1);
packer.RAW_PACK_CHANNEL(district_channel_id);
packer.RAW_PACK_CHANNEL(from_channel_id);
// packer.raw_pack_uint8('A');
bool has_optional_fields = (PyObject_IsTrue(optional_fields) != 0);
if (has_optional_fields) {
packer.raw_pack_uint16(STATESERVER_CREATE_OBJECT_WITH_REQUIRED_OTHER);
} else {
packer.raw_pack_uint16(STATESERVER_CREATE_OBJECT_WITH_REQUIRED);
}
packer.raw_pack_uint32(do_id);
// Parent is a bit overloaded; this parent is not about inheritance, this
// one is about the visibility container parent, i.e. the zone parent:
packer.raw_pack_uint32(parent_id);
packer.raw_pack_uint32(zone_id);
packer.raw_pack_uint16(_number);
// Specify all of the required fields.
int num_fields = get_num_inherited_fields();
for (int i = 0; i < num_fields; ++i) {
DCField *field = get_inherited_field(i);
if (field->is_required() && field->as_molecular_field() == nullptr) {
packer.begin_pack(field);
if (!pack_required_field(packer, distobj, field)) {
return Datagram();
}
packer.end_pack();
}
}
// Also specify the optional fields.
if (has_optional_fields) {
int num_optional_fields = PySequence_Size(optional_fields);
packer.raw_pack_uint16(num_optional_fields);
for (int i = 0; i < num_optional_fields; ++i) {
PyObject *py_field_name = PySequence_GetItem(optional_fields, i);
#if PY_MAJOR_VERSION >= 3
string field_name = PyUnicode_AsUTF8(py_field_name);
#else
string field_name = PyString_AsString(py_field_name);
#endif
Py_XDECREF(py_field_name);
DCField *field = get_field_by_name(field_name);
if (field == nullptr) {
ostringstream strm;
strm << "No field named " << field_name << " in class " << get_name()
<< "\n";
nassert_raise(strm.str());
return Datagram();
}
packer.raw_pack_uint16(field->get_number());
packer.begin_pack(field);
if (!pack_required_field(packer, distobj, field)) {
return Datagram();
}
packer.end_pack();
}
}
return Datagram(packer.get_data(), packer.get_length());
}
#endif // HAVE_PYTHON
/**
* Write a string representation of this instance to <out>.
*/
void DCClass::
output(ostream &out, bool brief) const {
output(std::ostream &out, bool brief) const {
output_instance(out, brief, "", "", "");
}
@@ -1029,7 +342,7 @@ output(ostream &out, bool brief) const {
* stream.
*/
void DCClass::
write(ostream &out, bool brief, int indent_level) const {
write(std::ostream &out, bool brief, int indent_level) const {
indent(out, indent_level);
if (_is_struct) {
out << "struct";
@@ -1089,7 +402,7 @@ write(ostream &out, bool brief, int indent_level) const {
* stream.
*/
void DCClass::
output_instance(ostream &out, bool brief, const string &prename,
output_instance(std::ostream &out, bool brief, const string &prename,
const string &name, const string &postname) const {
if (_is_struct) {
out << "struct";

View File

@@ -21,6 +21,8 @@
#ifdef WITHIN_PANDA
#include "pStatCollector.h"
#include "configVariableBool.h"
#include "extension.h"
#include "datagramIterator.h"
extern ConfigVariableBool dc_multiple_inheritance;
extern ConfigVariableBool dc_virtual_inheritance;
@@ -79,44 +81,52 @@ PUBLISHED:
virtual void output(std::ostream &out) const;
#ifdef HAVE_PYTHON
bool has_class_def() const;
void set_class_def(PyObject *class_def);
PyObject *get_class_def() const;
bool has_owner_class_def() const;
void set_owner_class_def(PyObject *owner_class_def);
PyObject *get_owner_class_def() const;
EXTENSION(bool has_class_def() const);
EXTENSION(void set_class_def(PyObject *class_def));
EXTENSION(PyObject *get_class_def() const);
EXTENSION(bool has_owner_class_def() const);
EXTENSION(void set_owner_class_def(PyObject *owner_class_def));
EXTENSION(PyObject *get_owner_class_def() const);
void receive_update(PyObject *distobj, DatagramIterator &di) const;
void receive_update_broadcast_required(PyObject *distobj, DatagramIterator &di) const;
void receive_update_broadcast_required_owner(PyObject *distobj, DatagramIterator &di) const;
void receive_update_all_required(PyObject *distobj, DatagramIterator &di) const;
void receive_update_other(PyObject *distobj, DatagramIterator &di) const;
EXTENSION(void receive_update(PyObject *distobj, DatagramIterator &di) const);
EXTENSION(void receive_update_broadcast_required(PyObject *distobj, DatagramIterator &di) const);
EXTENSION(void receive_update_broadcast_required_owner(PyObject *distobj, DatagramIterator &di) const);
EXTENSION(void receive_update_all_required(PyObject *distobj, DatagramIterator &di) const);
EXTENSION(void receive_update_other(PyObject *distobj, DatagramIterator &di) const);
void direct_update(PyObject *distobj, const std::string &field_name,
const vector_uchar &value_blob);
void direct_update(PyObject *distobj, const std::string &field_name,
const Datagram &datagram);
bool pack_required_field(Datagram &datagram, PyObject *distobj,
const DCField *field) const;
bool pack_required_field(DCPacker &packer, PyObject *distobj,
const DCField *field) const;
EXTENSION(void direct_update(PyObject *distobj, const std::string &field_name,
const vector_uchar &value_blob));
EXTENSION(void direct_update(PyObject *distobj, const std::string &field_name,
const Datagram &datagram));
EXTENSION(bool pack_required_field(Datagram &datagram, PyObject *distobj,
const DCField *field) const);
EXTENSION(bool pack_required_field(DCPacker &packer, PyObject *distobj,
const DCField *field) const);
Datagram client_format_update(const std::string &field_name,
DOID_TYPE do_id, PyObject *args) const;
Datagram ai_format_update(const std::string &field_name, DOID_TYPE do_id,
CHANNEL_TYPE to_id, CHANNEL_TYPE from_id, PyObject *args) const;
Datagram ai_format_update_msg_type(const std::string &field_name, DOID_TYPE do_id,
CHANNEL_TYPE to_id, CHANNEL_TYPE from_id, int msg_type, PyObject *args) const;
Datagram ai_format_generate(PyObject *distobj, DOID_TYPE do_id, ZONEID_TYPE parent_id, ZONEID_TYPE zone_id,
CHANNEL_TYPE district_channel_id, CHANNEL_TYPE from_channel_id,
PyObject *optional_fields) const;
Datagram client_format_generate_CMU(PyObject *distobj, DOID_TYPE do_id,
ZONEID_TYPE zone_id, PyObject *optional_fields) const;
EXTENSION(Datagram client_format_update(const std::string &field_name,
DOID_TYPE do_id, PyObject *args) const);
EXTENSION(Datagram ai_format_update(const std::string &field_name,
DOID_TYPE do_id,
CHANNEL_TYPE to_id, CHANNEL_TYPE from_id,
PyObject *args) const);
EXTENSION(Datagram ai_format_update_msg_type(const std::string &field_name,
DOID_TYPE do_id,
CHANNEL_TYPE to_id,
CHANNEL_TYPE from_id,
int msg_type,
PyObject *args) const);
EXTENSION(Datagram ai_format_generate(PyObject *distobj, DOID_TYPE do_id,
ZONEID_TYPE parent_id,
ZONEID_TYPE zone_id,
CHANNEL_TYPE district_channel_id,
CHANNEL_TYPE from_channel_id,
PyObject *optional_fields) const);
EXTENSION(Datagram client_format_generate_CMU(PyObject *distobj, DOID_TYPE do_id,
ZONEID_TYPE zone_id,
PyObject *optional_fields) const);
#endif
public:
virtual void output(std::ostream &out, bool brief) const;
@@ -135,8 +145,8 @@ private:
void shadow_inherited_field(const std::string &name);
#ifdef WITHIN_PANDA
PStatCollector _class_update_pcollector;
PStatCollector _class_generate_pcollector;
mutable PStatCollector _class_update_pcollector;
mutable PStatCollector _class_generate_pcollector;
static PStatCollector _update_pcollector;
static PStatCollector _generate_pcollector;
#endif
@@ -162,12 +172,17 @@ private:
typedef pmap<int, DCField *> FieldsByIndex;
FieldsByIndex _fields_by_index;
#ifdef HAVE_PYTHON
PyObject *_class_def;
PyObject *_owner_class_def;
#endif
// See pandaNode.h for an explanation of this trick
class PythonClassDefs : public ReferenceCount {
public:
virtual ~PythonClassDefs() {};
};
PT(PythonClassDefs) _python_class_defs;
friend class DCField;
#ifdef WITHIN_PANDA
friend class Extension<DCClass>;
#endif
};
#include "dcClass.I"

View File

@@ -0,0 +1,665 @@
/**
* PANDA 3D SOFTWARE
* Copyright (c) Carnegie Mellon University. All rights reserved.
*
* All use of this software is subject to the terms of the revised BSD
* license. You should have received a copy of this license along
* with this source code in a file named "LICENSE."
*
* @file dcClass_ext.cxx
* @author CFSworks
* @date 2019-07-03
*/
#include "dcClass_ext.h"
#include "dcField_ext.h"
#include "dcAtomicField.h"
#include "dcPacker.h"
#include "dcmsgtypes.h"
#include "datagram.h"
#include "datagramIterator.h"
#include "pStatTimer.h"
#ifdef HAVE_PYTHON
/**
* Returns true if the DCClass object has an associated Python class
* definition, false otherwise.
*/
bool Extension<DCClass>::
has_class_def() const {
return _this->_python_class_defs != nullptr
&& ((PythonClassDefsImpl *)_this->_python_class_defs.p())->_class_def != nullptr;
}
/**
* Sets the class object associated with this DistributedClass. This object
* will be used to construct new instances of the class.
*/
void Extension<DCClass>::
set_class_def(PyObject *class_def) {
PythonClassDefsImpl *defs = do_get_defs();
Py_XINCREF(class_def);
Py_XDECREF(defs->_class_def);
defs->_class_def = class_def;
}
/**
* Returns the class object that was previously associated with this
* DistributedClass. This will return a new reference to the object.
*/
PyObject *Extension<DCClass>::
get_class_def() const {
if (!has_class_def()) {
Py_INCREF(Py_None);
return Py_None;
}
PythonClassDefsImpl *defs = do_get_defs();
Py_INCREF(defs->_class_def);
return defs->_class_def;
}
/**
* Returns true if the DCClass object has an associated Python owner class
* definition, false otherwise.
*/
bool Extension<DCClass>::
has_owner_class_def() const {
return _this->_python_class_defs != nullptr
&& ((PythonClassDefsImpl *)_this->_python_class_defs.p())->_owner_class_def != nullptr;
}
/**
* Sets the owner class object associated with this DistributedClass. This
* object will be used to construct new owner instances of the class.
*/
void Extension<DCClass>::
set_owner_class_def(PyObject *owner_class_def) {
PythonClassDefsImpl *defs = do_get_defs();
Py_XINCREF(owner_class_def);
Py_XDECREF(defs->_owner_class_def);
defs->_owner_class_def = owner_class_def;
}
/**
* Returns the owner class object that was previously associated with this
* DistributedClass. This will return a new reference to the object.
*/
PyObject *Extension<DCClass>::
get_owner_class_def() const {
if (!has_owner_class_def()) {
Py_INCREF(Py_None);
return Py_None;
}
PythonClassDefsImpl *defs = do_get_defs();
Py_INCREF(defs->_owner_class_def);
return defs->_owner_class_def;
}
/**
* Extracts the update message out of the packer and applies it to the
* indicated object by calling the appropriate method.
*/
void Extension<DCClass>::
receive_update(PyObject *distobj, DatagramIterator &di) const {
PStatTimer timer(_this->_class_update_pcollector);
DCPacker packer;
const char *data = (const char *)di.get_datagram().get_data();
packer.set_unpack_data(data + di.get_current_index(),
di.get_remaining_size(), false);
int field_id = packer.raw_unpack_uint16();
DCField *field = _this->get_field_by_index(field_id);
if (field == nullptr) {
ostringstream strm;
strm
<< "Received update for field " << field_id << ", not in class "
<< _this->get_name();
nassert_raise(strm.str());
return;
}
packer.begin_unpack(field);
invoke_extension(field).receive_update(packer, distobj);
packer.end_unpack();
di.skip_bytes(packer.get_num_unpacked_bytes());
}
/**
* Processes a big datagram that includes all of the "required" fields that
* are sent along with a normal "generate with required" message. This is all
* of the atomic fields that are marked "broadcast required".
*/
void Extension<DCClass>::
receive_update_broadcast_required(PyObject *distobj, DatagramIterator &di) const {
PStatTimer timer(_this->_class_update_pcollector);
DCPacker packer;
const char *data = (const char *)di.get_datagram().get_data();
packer.set_unpack_data(data + di.get_current_index(),
di.get_remaining_size(), false);
int num_fields = _this->get_num_inherited_fields();
for (int i = 0; i < num_fields && !PyErr_Occurred(); ++i) {
DCField *field = _this->get_inherited_field(i);
if (field->as_molecular_field() == nullptr &&
field->is_required() && field->is_broadcast()) {
packer.begin_unpack(field);
invoke_extension(field).receive_update(packer, distobj);
if (!packer.end_unpack()) {
break;
}
}
}
di.skip_bytes(packer.get_num_unpacked_bytes());
}
/**
* Processes a big datagram that includes all of the "required" fields that
* are sent along with a normal "generate with required" message. This is all
* of the atomic fields that are marked "broadcast ownrecv". Should be used
* for 'owner-view' objects.
*/
void Extension<DCClass>::
receive_update_broadcast_required_owner(PyObject *distobj,
DatagramIterator &di) const {
PStatTimer timer(_this->_class_update_pcollector);
DCPacker packer;
const char *data = (const char *)di.get_datagram().get_data();
packer.set_unpack_data(data + di.get_current_index(),
di.get_remaining_size(), false);
int num_fields = _this->get_num_inherited_fields();
for (int i = 0; i < num_fields && !PyErr_Occurred(); ++i) {
DCField *field = _this->get_inherited_field(i);
if (field->as_molecular_field() == nullptr &&
field->is_required() && (field->is_ownrecv() || field->is_broadcast())) {
packer.begin_unpack(field);
invoke_extension(field).receive_update(packer, distobj);
if (!packer.end_unpack()) {
break;
}
}
}
di.skip_bytes(packer.get_num_unpacked_bytes());
}
/**
* Processes a big datagram that includes all of the "required" fields that
* are sent when an avatar is created. This is all of the atomic fields that
* are marked "required", whether they are broadcast or not.
*/
void Extension<DCClass>::
receive_update_all_required(PyObject *distobj, DatagramIterator &di) const {
PStatTimer timer(_this->_class_update_pcollector);
DCPacker packer;
const char *data = (const char *)di.get_datagram().get_data();
packer.set_unpack_data(data + di.get_current_index(),
di.get_remaining_size(), false);
int num_fields = _this->get_num_inherited_fields();
for (int i = 0; i < num_fields && !PyErr_Occurred(); ++i) {
DCField *field = _this->get_inherited_field(i);
if (field->as_molecular_field() == nullptr &&
field->is_required()) {
packer.begin_unpack(field);
invoke_extension(field).receive_update(packer, distobj);
if (!packer.end_unpack()) {
break;
}
}
}
di.skip_bytes(packer.get_num_unpacked_bytes());
}
/**
* Processes a datagram that lists some additional fields that are broadcast
* in one chunk.
*/
void Extension<DCClass>::
receive_update_other(PyObject *distobj, DatagramIterator &di) const {
PStatTimer timer(_this->_class_update_pcollector);
int num_fields = di.get_uint16();
for (int i = 0; i < num_fields && !PyErr_Occurred(); ++i) {
receive_update(distobj, di);
}
}
/**
* Processes an update for a named field from a packed value blob.
*/
void Extension<DCClass>::
direct_update(PyObject *distobj, const std::string &field_name,
const vector_uchar &value_blob) {
DCField *field = _this->get_field_by_name(field_name);
nassertv_always(field != nullptr);
DCPacker packer;
packer.set_unpack_data(value_blob);
packer.begin_unpack(field);
invoke_extension(field).receive_update(packer, distobj);
packer.end_unpack();
}
/**
* Processes an update for a named field from a packed datagram.
*/
void Extension<DCClass>::
direct_update(PyObject *distobj, const std::string &field_name,
const Datagram &datagram) {
DCField *field = _this->get_field_by_name(field_name);
nassertv_always(field != nullptr);
DCPacker packer;
packer.set_unpack_data((const char *)datagram.get_data(), datagram.get_length(), false);
packer.begin_unpack(field);
invoke_extension(field).receive_update(packer, distobj);
packer.end_unpack();
}
/**
* Looks up the current value of the indicated field by calling the
* appropriate get*() function, then packs that value into the datagram. This
* field is presumably either a required field or a specified optional field,
* and we are building up a datagram for the generate-with-required message.
*
* Returns true on success, false on failure.
*/
bool Extension<DCClass>::
pack_required_field(Datagram &datagram, PyObject *distobj,
const DCField *field) const {
DCPacker packer;
packer.begin_pack(field);
if (!pack_required_field(packer, distobj, field)) {
return false;
}
if (!packer.end_pack()) {
return false;
}
datagram.append_data(packer.get_data(), packer.get_length());
return true;
}
/**
* Looks up the current value of the indicated field by calling the
* appropriate get*() function, then packs that value into the packer. This
* field is presumably either a required field or a specified optional field,
* and we are building up a datagram for the generate-with-required message.
*
* Returns true on success, false on failure.
*/
bool Extension<DCClass>::
pack_required_field(DCPacker &packer, PyObject *distobj,
const DCField *field) const {
using std::ostringstream;
const DCParameter *parameter = field->as_parameter();
if (parameter != nullptr) {
// This is the easy case: to pack a parameter, we just look on the class
// object for the data element.
std::string field_name = field->get_name();
if (!PyObject_HasAttrString(distobj, (char *)field_name.c_str())) {
// If the attribute is not defined, but the field has a default value
// specified, quietly pack the default value.
if (field->has_default_value()) {
packer.pack_default_value();
return true;
}
// If there is no default value specified, it's an error.
ostringstream strm;
strm << "Data element " << field_name
<< ", required by dc file for dclass " << _this->get_name()
<< ", not defined on object";
nassert_raise(strm.str());
return false;
}
PyObject *result =
PyObject_GetAttrString(distobj, (char *)field_name.c_str());
nassertr(result != nullptr, false);
// Now pack the value into the datagram.
bool pack_ok = invoke_extension((DCField *)parameter).pack_args(packer, result);
Py_DECREF(result);
return pack_ok;
}
if (field->as_molecular_field() != nullptr) {
ostringstream strm;
strm << "Cannot pack molecular field " << field->get_name()
<< " for generate";
nassert_raise(strm.str());
return false;
}
const DCAtomicField *atom = field->as_atomic_field();
nassertr(atom != nullptr, false);
// We need to get the initial value of this field. There isn't a good,
// robust way to get this; presently, we just mangle the "setFoo()" name of
// the required field into "getFoo()" and call that.
std::string setter_name = atom->get_name();
if (setter_name.empty()) {
ostringstream strm;
strm << "Required field is unnamed!";
nassert_raise(strm.str());
return false;
}
if (atom->get_num_elements() == 0) {
// It sure doesn't make sense to have a required field with no parameters.
// What data, exactly, is required?
ostringstream strm;
strm << "Required field " << setter_name << " has no parameters!";
nassert_raise(strm.str());
return false;
}
std::string getter_name = setter_name;
if (setter_name.substr(0, 3) == "set") {
// If the original method started with "set", we mangle this directly to
// "get".
getter_name[0] = 'g';
} else {
// Otherwise, we add a "get" prefix, and capitalize the next letter.
getter_name = "get" + setter_name;
getter_name[3] = toupper(getter_name[3]);
}
// Now we have to look up the getter on the distributed object and call it.
if (!PyObject_HasAttrString(distobj, (char *)getter_name.c_str())) {
// As above, if there's no getter but the field has a default value
// specified, quietly pack the default value.
if (field->has_default_value()) {
packer.pack_default_value();
return true;
}
// Otherwise, with no default value it's an error.
ostringstream strm;
strm << "Distributed class " << _this->get_name()
<< " doesn't have getter named " << getter_name
<< " to match required field " << setter_name;
nassert_raise(strm.str());
return false;
}
PyObject *func =
PyObject_GetAttrString(distobj, (char *)getter_name.c_str());
nassertr(func != nullptr, false);
PyObject *empty_args = PyTuple_New(0);
PyObject *result = PyObject_CallObject(func, empty_args);
Py_DECREF(empty_args);
Py_DECREF(func);
if (result == nullptr) {
// We don't set this as an exception, since presumably the Python method
// itself has already triggered a Python exception.
std::cerr << "Error when calling " << getter_name << "\n";
return false;
}
if (atom->get_num_elements() == 1) {
// In this case, we expect the getter to return one object, which we wrap
// up in a tuple.
PyObject *tuple = PyTuple_New(1);
PyTuple_SET_ITEM(tuple, 0, result);
result = tuple;
} else {
// Otherwise, it had better already be a sequence or tuple of some sort.
if (!PySequence_Check(result)) {
ostringstream strm;
strm << "Since dclass " << _this->get_name() << " method " << setter_name
<< " is declared to have multiple parameters, Python function "
<< getter_name << " must return a list or tuple.\n";
nassert_raise(strm.str());
return false;
}
}
// Now pack the arguments into the datagram.
bool pack_ok = invoke_extension((DCField *)atom).pack_args(packer, result);
Py_DECREF(result);
return pack_ok;
}
/**
* Generates a datagram containing the message necessary to send an update for
* the indicated distributed object from the client.
*/
Datagram Extension<DCClass>::
client_format_update(const std::string &field_name, DOID_TYPE do_id,
PyObject *args) const {
DCField *field = _this->get_field_by_name(field_name);
if (field == nullptr) {
std::ostringstream strm;
strm << "No field named " << field_name << " in class " << _this->get_name()
<< "\n";
nassert_raise(strm.str());
return Datagram();
}
return invoke_extension(field).client_format_update(do_id, args);
}
/**
* Generates a datagram containing the message necessary to send an update for
* the indicated distributed object from the AI.
*/
Datagram Extension<DCClass>::
ai_format_update(const std::string &field_name, DOID_TYPE do_id,
CHANNEL_TYPE to_id, CHANNEL_TYPE from_id, PyObject *args) const {
DCField *field = _this->get_field_by_name(field_name);
if (field == nullptr) {
std::ostringstream strm;
strm << "No field named " << field_name << " in class " << _this->get_name()
<< "\n";
nassert_raise(strm.str());
return Datagram();
}
return invoke_extension(field).ai_format_update(do_id, to_id, from_id, args);
}
/**
* Generates a datagram containing the message necessary to send an update,
* using the indicated msg type for the indicated distributed object from the
* AI.
*/
Datagram Extension<DCClass>::
ai_format_update_msg_type(const std::string &field_name, DOID_TYPE do_id,
CHANNEL_TYPE to_id, CHANNEL_TYPE from_id,
int msg_type, PyObject *args) const {
DCField *field = _this->get_field_by_name(field_name);
if (field == nullptr) {
std::ostringstream strm;
strm << "No field named " << field_name << " in class " << _this->get_name()
<< "\n";
nassert_raise(strm.str());
return Datagram();
}
return invoke_extension(field).ai_format_update_msg_type(do_id, to_id, from_id, msg_type, args);
}
/**
* Generates a datagram containing the message necessary to generate a new
* distributed object from the client. This requires querying the object for
* the initial value of its required fields.
*
* optional_fields is a list of fieldNames to generate in addition to the
* normal required fields.
*
* This method is only called by the CMU implementation.
*/
Datagram Extension<DCClass>::
client_format_generate_CMU(PyObject *distobj, DOID_TYPE do_id,
ZONEID_TYPE zone_id,
PyObject *optional_fields) const {
DCPacker packer;
packer.raw_pack_uint16(CLIENT_OBJECT_GENERATE_CMU);
packer.raw_pack_uint32(zone_id);
packer.raw_pack_uint16(_this->_number);
packer.raw_pack_uint32(do_id);
// Specify all of the required fields.
int num_fields = _this->get_num_inherited_fields();
for (int i = 0; i < num_fields; ++i) {
DCField *field = _this->get_inherited_field(i);
if (field->is_required() && field->as_molecular_field() == nullptr) {
packer.begin_pack(field);
if (!pack_required_field(packer, distobj, field)) {
return Datagram();
}
packer.end_pack();
}
}
// Also specify the optional fields.
int num_optional_fields = 0;
if (PyObject_IsTrue(optional_fields)) {
num_optional_fields = PySequence_Size(optional_fields);
}
packer.raw_pack_uint16(num_optional_fields);
for (int i = 0; i < num_optional_fields; i++) {
PyObject *py_field_name = PySequence_GetItem(optional_fields, i);
#if PY_MAJOR_VERSION >= 3
std::string field_name = PyUnicode_AsUTF8(py_field_name);
#else
std::string field_name = PyString_AsString(py_field_name);
#endif
Py_XDECREF(py_field_name);
DCField *field = _this->get_field_by_name(field_name);
if (field == nullptr) {
std::ostringstream strm;
strm << "No field named " << field_name << " in class " << _this->get_name()
<< "\n";
nassert_raise(strm.str());
return Datagram();
}
packer.raw_pack_uint16(field->get_number());
packer.begin_pack(field);
if (!pack_required_field(packer, distobj, field)) {
return Datagram();
}
packer.end_pack();
}
return Datagram(packer.get_data(), packer.get_length());
}
/**
* Generates a datagram containing the message necessary to generate a new
* distributed object from the AI. This requires querying the object for the
* initial value of its required fields.
*
* optional_fields is a list of fieldNames to generate in addition to the
* normal required fields.
*/
Datagram Extension<DCClass>::
ai_format_generate(PyObject *distobj, DOID_TYPE do_id,
DOID_TYPE parent_id, ZONEID_TYPE zone_id,
CHANNEL_TYPE district_channel_id, CHANNEL_TYPE from_channel_id,
PyObject *optional_fields) const {
DCPacker packer;
packer.raw_pack_uint8(1);
packer.RAW_PACK_CHANNEL(district_channel_id);
packer.RAW_PACK_CHANNEL(from_channel_id);
// packer.raw_pack_uint8('A');
bool has_optional_fields = (PyObject_IsTrue(optional_fields) != 0);
if (has_optional_fields) {
packer.raw_pack_uint16(STATESERVER_CREATE_OBJECT_WITH_REQUIRED_OTHER);
} else {
packer.raw_pack_uint16(STATESERVER_CREATE_OBJECT_WITH_REQUIRED);
}
packer.raw_pack_uint32(do_id);
// Parent is a bit overloaded; this parent is not about inheritance, this
// one is about the visibility container parent, i.e. the zone parent:
packer.raw_pack_uint32(parent_id);
packer.raw_pack_uint32(zone_id);
packer.raw_pack_uint16(_this->_number);
// Specify all of the required fields.
int num_fields = _this->get_num_inherited_fields();
for (int i = 0; i < num_fields; ++i) {
DCField *field = _this->get_inherited_field(i);
if (field->is_required() && field->as_molecular_field() == nullptr) {
packer.begin_pack(field);
if (!pack_required_field(packer, distobj, field)) {
return Datagram();
}
packer.end_pack();
}
}
// Also specify the optional fields.
if (has_optional_fields) {
int num_optional_fields = PySequence_Size(optional_fields);
packer.raw_pack_uint16(num_optional_fields);
for (int i = 0; i < num_optional_fields; ++i) {
PyObject *py_field_name = PySequence_GetItem(optional_fields, i);
#if PY_MAJOR_VERSION >= 3
std::string field_name = PyUnicode_AsUTF8(py_field_name);
#else
std::string field_name = PyString_AsString(py_field_name);
#endif
Py_XDECREF(py_field_name);
DCField *field = _this->get_field_by_name(field_name);
if (field == nullptr) {
std::ostringstream strm;
strm << "No field named " << field_name << " in class "
<< _this->get_name() << "\n";
nassert_raise(strm.str());
return Datagram();
}
packer.raw_pack_uint16(field->get_number());
packer.begin_pack(field);
if (!pack_required_field(packer, distobj, field)) {
return Datagram();
}
packer.end_pack();
}
}
return Datagram(packer.get_data(), packer.get_length());
}
/**
* Returns the PythonClassDefsImpl object stored on the DCClass object,
* creating it if it didn't yet exist.
*/
Extension<DCClass>::PythonClassDefsImpl *Extension<DCClass>::
do_get_defs() const {
if (!_this->_python_class_defs) {
_this->_python_class_defs = new PythonClassDefsImpl();
}
return (PythonClassDefsImpl *)_this->_python_class_defs.p();
}
#endif // HAVE_PYTHON

View File

@@ -0,0 +1,93 @@
/**
* PANDA 3D SOFTWARE
* Copyright (c) Carnegie Mellon University. All rights reserved.
*
* All use of this software is subject to the terms of the revised BSD
* license. You should have received a copy of this license along
* with this source code in a file named "LICENSE."
*
* @file dcClass_ext.h
* @author CFSworks
* @date 2019-07-03
*/
#ifndef DCCLASS_EXT_H
#define DCCLASS_EXT_H
#include "dtoolbase.h"
#ifdef HAVE_PYTHON
#include "extension.h"
#include "dcClass.h"
#include "py_panda.h"
/**
* This class defines the extension methods for DCClass, which are called
* instead of any C++ methods with the same prototype.
*/
template<>
class Extension<DCClass> : public ExtensionBase<DCClass> {
public:
bool has_class_def() const;
void set_class_def(PyObject *class_def);
PyObject *get_class_def() const;
bool has_owner_class_def() const;
void set_owner_class_def(PyObject *owner_class_def);
PyObject *get_owner_class_def() const;
void receive_update(PyObject *distobj, DatagramIterator &di) const;
void receive_update_broadcast_required(PyObject *distobj, DatagramIterator &di) const;
void receive_update_broadcast_required_owner(PyObject *distobj, DatagramIterator &di) const;
void receive_update_all_required(PyObject *distobj, DatagramIterator &di) const;
void receive_update_other(PyObject *distobj, DatagramIterator &di) const;
void direct_update(PyObject *distobj, const std::string &field_name,
const vector_uchar &value_blob);
void direct_update(PyObject *distobj, const std::string &field_name,
const Datagram &datagram);
bool pack_required_field(Datagram &datagram, PyObject *distobj,
const DCField *field) const;
bool pack_required_field(DCPacker &packer, PyObject *distobj,
const DCField *field) const;
Datagram client_format_update(const std::string &field_name,
DOID_TYPE do_id, PyObject *args) const;
Datagram ai_format_update(const std::string &field_name, DOID_TYPE do_id,
CHANNEL_TYPE to_id, CHANNEL_TYPE from_id, PyObject *args) const;
Datagram ai_format_update_msg_type(const std::string &field_name, DOID_TYPE do_id,
CHANNEL_TYPE to_id, CHANNEL_TYPE from_id, int msg_type, PyObject *args) const;
Datagram ai_format_generate(PyObject *distobj, DOID_TYPE do_id,
ZONEID_TYPE parent_id, ZONEID_TYPE zone_id,
CHANNEL_TYPE district_channel_id,
CHANNEL_TYPE from_channel_id,
PyObject *optional_fields) const;
Datagram client_format_generate_CMU(PyObject *distobj, DOID_TYPE do_id,
ZONEID_TYPE zone_id,
PyObject *optional_fields) const;
private:
/**
* Implementation of DCClass::PythonClassDefs which actually stores the
* Python pointers. This needs to be defined here rather than on DCClass
* itself, since DCClass cannot include Python.h or call Python functions.
*/
class PythonClassDefsImpl : public DCClass::PythonClassDefs {
public:
virtual ~PythonClassDefsImpl() {
Py_XDECREF(_class_def);
Py_XDECREF(_owner_class_def);
}
PyObject *_class_def = nullptr;
PyObject *_owner_class_def = nullptr;
};
PythonClassDefsImpl *do_get_defs() const;
};
#endif // HAVE_PYTHON
#endif // DCCLASS_EXT_H

View File

@@ -18,19 +18,6 @@
#include "hashGenerator.h"
#include "dcmsgtypes.h"
#include "datagram.h"
#include "datagramIterator.h"
#ifdef HAVE_PYTHON
#include "py_panda.h"
#endif
#ifdef WITHIN_PANDA
#include "pStatTimer.h"
#endif
using std::string;
/**
*
*/
@@ -61,7 +48,7 @@ DCField() :
*
*/
DCField::
DCField(const string &name, DCClass *dclass) :
DCField(const std::string &name, DCClass *dclass) :
DCPackerInterface(name),
_dclass(dclass)
#ifdef WITHIN_PANDA
@@ -164,14 +151,14 @@ as_parameter() const {
* string formatting it for human consumption. Returns empty string if there
* is an error.
*/
string DCField::
std::string DCField::
format_data(const vector_uchar &packed_data, bool show_field_names) {
DCPacker packer;
packer.set_unpack_data(packed_data);
packer.begin_unpack(this);
string result = packer.unpack_and_format(show_field_names);
std::string result = packer.unpack_and_format(show_field_names);
if (!packer.end_unpack()) {
return string();
return std::string();
}
return result;
}
@@ -182,7 +169,7 @@ format_data(const vector_uchar &packed_data, bool show_field_names) {
* the corresponding packed data. Returns empty string if there is an error.
*/
vector_uchar DCField::
parse_string(const string &formatted_string) {
parse_string(const std::string &formatted_string) {
DCPacker packer;
packer.begin_pack(this);
if (!packer.parse_and_pack(formatted_string)) {
@@ -215,254 +202,6 @@ validate_ranges(const vector_uchar &packed_data) const {
return (packer.get_num_unpacked_bytes() == packed_data.size());
}
#ifdef HAVE_PYTHON
/**
* Packs the Python arguments from the indicated tuple into the packer.
* Returns true on success, false on failure.
*
* It is assumed that the packer is currently positioned on this field.
*/
bool DCField::
pack_args(DCPacker &packer, PyObject *sequence) const {
nassertr(!packer.had_error(), false);
nassertr(packer.get_current_field() == this, false);
packer.pack_object(sequence);
if (!packer.had_error()) {
/*
cerr << "pack " << get_name() << get_pystr(sequence) << "\n";
*/
return true;
}
if (!Notify::ptr()->has_assert_failed()) {
std::ostringstream strm;
PyObject *exc_type = PyExc_Exception;
if (as_parameter() != nullptr) {
// If it's a parameter-type field, the value may or may not be a
// sequence.
if (packer.had_pack_error()) {
strm << "Incorrect arguments to field: " << get_name()
<< " = " << get_pystr(sequence);
exc_type = PyExc_TypeError;
} else {
strm << "Value out of range on field: " << get_name()
<< " = " << get_pystr(sequence);
exc_type = PyExc_ValueError;
}
} else {
// If it's a molecular or atomic field, the value should be a sequence.
PyObject *tuple = PySequence_Tuple(sequence);
if (tuple == nullptr) {
strm << "Value for " << get_name() << " not a sequence: " \
<< get_pystr(sequence);
exc_type = PyExc_TypeError;
} else {
if (packer.had_pack_error()) {
strm << "Incorrect arguments to field: " << get_name()
<< get_pystr(sequence);
exc_type = PyExc_TypeError;
} else {
strm << "Value out of range on field: " << get_name()
<< get_pystr(sequence);
exc_type = PyExc_ValueError;
}
Py_DECREF(tuple);
}
}
string message = strm.str();
PyErr_SetString(exc_type, message.c_str());
}
return false;
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Unpacks the values from the packer, beginning at the current point in the
* unpack_buffer, into a Python tuple and returns the tuple.
*
* It is assumed that the packer is currently positioned on this field.
*/
PyObject *DCField::
unpack_args(DCPacker &packer) const {
nassertr(!packer.had_error(), nullptr);
nassertr(packer.get_current_field() == this, nullptr);
size_t start_byte = packer.get_num_unpacked_bytes();
PyObject *object = packer.unpack_object();
if (!packer.had_error()) {
// Successfully unpacked.
/*
cerr << "recv " << get_name() << get_pystr(object) << "\n";
*/
return object;
}
if (!Notify::ptr()->has_assert_failed()) {
std::ostringstream strm;
PyObject *exc_type = PyExc_Exception;
if (packer.had_pack_error()) {
strm << "Data error unpacking field ";
output(strm, true);
size_t length = packer.get_unpack_length() - start_byte;
strm << "\nGot data (" << (int)length << " bytes):\n";
Datagram dg(packer.get_unpack_data() + start_byte, length);
dg.dump_hex(strm);
size_t error_byte = packer.get_num_unpacked_bytes() - start_byte;
strm << "Error detected on byte " << error_byte
<< " (" << std::hex << error_byte << std::dec << " hex)";
exc_type = PyExc_RuntimeError;
} else {
strm << "Value outside specified range when unpacking field "
<< get_name() << ": " << get_pystr(object);
exc_type = PyExc_ValueError;
}
string message = strm.str();
PyErr_SetString(exc_type, message.c_str());
}
Py_XDECREF(object);
return nullptr;
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Extracts the update message out of the datagram and applies it to the
* indicated object by calling the appropriate method.
*/
void DCField::
receive_update(DCPacker &packer, PyObject *distobj) const {
if (as_parameter() != nullptr) {
// If it's a parameter-type field, just store a new value on the object.
PyObject *value = unpack_args(packer);
if (value != nullptr) {
PyObject_SetAttrString(distobj, (char *)_name.c_str(), value);
}
Py_DECREF(value);
} else {
// Otherwise, it must be an atomic or molecular field, so call the
// corresponding method.
if (!PyObject_HasAttrString(distobj, (char *)_name.c_str())) {
// If there's no Python method to receive this message, don't bother
// unpacking it to a Python tuple--just skip past the message.
packer.unpack_skip();
} else {
// Otherwise, get a Python tuple from the args and call the Python
// method.
PyObject *args = unpack_args(packer);
if (args != nullptr) {
PyObject *func = PyObject_GetAttrString(distobj, (char *)_name.c_str());
nassertv(func != nullptr);
PyObject *result;
{
#ifdef WITHIN_PANDA
PStatTimer timer(((DCField *)this)->_field_update_pcollector);
#endif
result = PyObject_CallObject(func, args);
}
Py_XDECREF(result);
Py_DECREF(func);
Py_DECREF(args);
}
}
}
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Generates a datagram containing the message necessary to send an update for
* the indicated distributed object from the client.
*/
Datagram DCField::
client_format_update(DOID_TYPE do_id, PyObject *args) const {
DCPacker packer;
packer.raw_pack_uint16(CLIENT_OBJECT_SET_FIELD);
packer.raw_pack_uint32(do_id);
packer.raw_pack_uint16(_number);
packer.begin_pack(this);
pack_args(packer, args);
if (!packer.end_pack()) {
return Datagram();
}
return Datagram(packer.get_data(), packer.get_length());
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Generates a datagram containing the message necessary to send an update for
* the indicated distributed object from the AI.
*/
Datagram DCField::
ai_format_update(DOID_TYPE do_id, CHANNEL_TYPE to_id, CHANNEL_TYPE from_id, PyObject *args) const {
DCPacker packer;
packer.raw_pack_uint8(1);
packer.RAW_PACK_CHANNEL(to_id);
packer.RAW_PACK_CHANNEL(from_id);
packer.raw_pack_uint16(STATESERVER_OBJECT_SET_FIELD);
packer.raw_pack_uint32(do_id);
packer.raw_pack_uint16(_number);
packer.begin_pack(this);
pack_args(packer, args);
if (!packer.end_pack()) {
return Datagram();
}
return Datagram(packer.get_data(), packer.get_length());
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Generates a datagram containing the message necessary to send an update,
* with the msg type, for the indicated distributed object from the AI.
*/
Datagram DCField::
ai_format_update_msg_type(DOID_TYPE do_id, CHANNEL_TYPE to_id, CHANNEL_TYPE from_id, int msg_type, PyObject *args) const {
DCPacker packer;
packer.raw_pack_uint8(1);
packer.RAW_PACK_CHANNEL(to_id);
packer.RAW_PACK_CHANNEL(from_id);
packer.raw_pack_uint16(msg_type);
packer.raw_pack_uint32(do_id);
packer.raw_pack_uint16(_number);
packer.begin_pack(this);
pack_args(packer, args);
if (!packer.end_pack()) {
return Datagram();
}
return Datagram(packer.get_data(), packer.get_length());
}
#endif // HAVE_PYTHON
/**
* Accumulates the properties of this field into the hash.
*/
@@ -502,62 +241,13 @@ pack_default_value(DCPackData &pack_data, bool &) const {
* Sets the name of this field.
*/
void DCField::
set_name(const string &name) {
set_name(const std::string &name) {
DCPackerInterface::set_name(name);
if (_dclass != nullptr) {
_dclass->_dc_file->mark_inherited_fields_stale();
}
}
#ifdef HAVE_PYTHON
/**
* Returns the string representation of the indicated Python object.
*/
string DCField::
get_pystr(PyObject *value) {
if (value == nullptr) {
return "(null)";
}
PyObject *str = PyObject_Str(value);
if (str != nullptr) {
#if PY_MAJOR_VERSION >= 3
string result = PyUnicode_AsUTF8(str);
#else
string result = PyString_AsString(str);
#endif
Py_DECREF(str);
return result;
}
PyObject *repr = PyObject_Repr(value);
if (repr != nullptr) {
#if PY_MAJOR_VERSION >= 3
string result = PyUnicode_AsUTF8(repr);
#else
string result = PyString_AsString(repr);
#endif
Py_DECREF(repr);
return result;
}
if (value->ob_type != nullptr) {
PyObject *typestr = PyObject_Str((PyObject *)(value->ob_type));
if (typestr != nullptr) {
#if PY_MAJOR_VERSION >= 3
string result = PyUnicode_AsUTF8(typestr);
#else
string result = PyString_AsString(typestr);
#endif
Py_DECREF(typestr);
return result;
}
}
return "(invalid object)";
}
#endif // HAVE_PYTHON
/**
* Recomputes the default value of the field by repacking it.
*/

View File

@@ -20,6 +20,8 @@
#ifdef WITHIN_PANDA
#include "pStatCollector.h"
#include "extension.h"
#include "datagram.h"
#endif
class DCPacker;
@@ -75,18 +77,17 @@ PUBLISHED:
INLINE void output(std::ostream &out) const;
INLINE void write(std::ostream &out, int indent_level) const;
#ifdef HAVE_PYTHON
bool pack_args(DCPacker &packer, PyObject *sequence) const;
PyObject *unpack_args(DCPacker &packer) const;
EXTENSION(bool pack_args(DCPacker &packer, PyObject *sequence) const);
EXTENSION(PyObject *unpack_args(DCPacker &packer) const);
void receive_update(DCPacker &packer, PyObject *distobj) const;
EXTENSION(void receive_update(DCPacker &packer, PyObject *distobj) const);
Datagram client_format_update(DOID_TYPE do_id, PyObject *args) const;
Datagram ai_format_update(DOID_TYPE do_id, CHANNEL_TYPE to_id, CHANNEL_TYPE from_id,
PyObject *args) const;
Datagram ai_format_update_msg_type(DOID_TYPE do_id, CHANNEL_TYPE to_id, CHANNEL_TYPE from_id,
int msg_type, PyObject *args) const;
#endif
EXTENSION(Datagram client_format_update(DOID_TYPE do_id, PyObject *args) const);
EXTENSION(Datagram ai_format_update(DOID_TYPE do_id, CHANNEL_TYPE to_id,
CHANNEL_TYPE from_id, PyObject *args) const);
EXTENSION(Datagram ai_format_update_msg_type(DOID_TYPE do_id, CHANNEL_TYPE to_id,
CHANNEL_TYPE from_id, int msg_type,
PyObject *args) const);
public:
virtual void output(std::ostream &out, bool brief) const=0;
@@ -99,10 +100,6 @@ public:
INLINE void set_class(DCClass *dclass);
INLINE void set_default_value(vector_uchar default_value);
#ifdef HAVE_PYTHON
static std::string get_pystr(PyObject *value);
#endif
protected:
void refresh_default_value();
@@ -118,6 +115,8 @@ private:
#ifdef WITHIN_PANDA
PStatCollector _field_update_pcollector;
friend class Extension<DCField>;
#endif
};

View File

@@ -0,0 +1,305 @@
/**
* PANDA 3D SOFTWARE
* Copyright (c) Carnegie Mellon University. All rights reserved.
*
* All use of this software is subject to the terms of the revised BSD
* license. You should have received a copy of this license along
* with this source code in a file named "LICENSE."
*
* @file dcField_ext.cxx
* @author CFSworks
* @date 2019-07-03
*/
#include "dcField_ext.h"
#include "dcPacker_ext.h"
#include "dcmsgtypes.h"
#include "datagram.h"
#include "pStatTimer.h"
#ifdef HAVE_PYTHON
/**
* Packs the Python arguments from the indicated tuple into the packer.
* Returns true on success, false on failure.
*
* It is assumed that the packer is currently positioned on this field.
*/
bool Extension<DCField>::
pack_args(DCPacker &packer, PyObject *sequence) const {
nassertr(!packer.had_error(), false);
nassertr(packer.get_current_field() == _this, false);
invoke_extension(&packer).pack_object(sequence);
if (!packer.had_error()) {
/*
cerr << "pack " << _this->get_name() << get_pystr(sequence) << "\n";
*/
return true;
}
if (!Notify::ptr()->has_assert_failed()) {
std::ostringstream strm;
PyObject *exc_type = PyExc_Exception;
if (_this->as_parameter() != nullptr) {
// If it's a parameter-type field, the value may or may not be a
// sequence.
if (packer.had_pack_error()) {
strm << "Incorrect arguments to field: " << _this->get_name()
<< " = " << get_pystr(sequence);
exc_type = PyExc_TypeError;
} else {
strm << "Value out of range on field: " << _this->get_name()
<< " = " << get_pystr(sequence);
exc_type = PyExc_ValueError;
}
} else {
// If it's a molecular or atomic field, the value should be a sequence.
PyObject *tuple = PySequence_Tuple(sequence);
if (tuple == nullptr) {
strm << "Value for " << _this->get_name() << " not a sequence: " \
<< get_pystr(sequence);
exc_type = PyExc_TypeError;
} else {
if (packer.had_pack_error()) {
strm << "Incorrect arguments to field: " << _this->get_name()
<< get_pystr(sequence);
exc_type = PyExc_TypeError;
} else {
strm << "Value out of range on field: " << _this->get_name()
<< get_pystr(sequence);
exc_type = PyExc_ValueError;
}
Py_DECREF(tuple);
}
}
std::string message = strm.str();
PyErr_SetString(exc_type, message.c_str());
}
return false;
}
/**
* Unpacks the values from the packer, beginning at the current point in the
* unpack_buffer, into a Python tuple and returns the tuple.
*
* It is assumed that the packer is currently positioned on this field.
*/
PyObject *Extension<DCField>::
unpack_args(DCPacker &packer) const {
nassertr(!packer.had_error(), nullptr);
nassertr(packer.get_current_field() == _this, nullptr);
size_t start_byte = packer.get_num_unpacked_bytes();
PyObject *object = invoke_extension(&packer).unpack_object();
if (!packer.had_error()) {
// Successfully unpacked.
/*
cerr << "recv " << _this->get_name() << get_pystr(object) << "\n";
*/
return object;
}
if (!Notify::ptr()->has_assert_failed()) {
std::ostringstream strm;
PyObject *exc_type = PyExc_Exception;
if (packer.had_pack_error()) {
strm << "Data error unpacking field ";
_this->output(strm, true);
size_t length = packer.get_unpack_length() - start_byte;
strm << "\nGot data (" << (int)length << " bytes):\n";
Datagram dg(packer.get_unpack_data() + start_byte, length);
dg.dump_hex(strm);
size_t error_byte = packer.get_num_unpacked_bytes() - start_byte;
strm << "Error detected on byte " << error_byte
<< " (" << std::hex << error_byte << std::dec << " hex)";
exc_type = PyExc_RuntimeError;
} else {
strm << "Value outside specified range when unpacking field "
<< _this->get_name() << ": " << get_pystr(object);
exc_type = PyExc_ValueError;
}
std::string message = strm.str();
PyErr_SetString(exc_type, message.c_str());
}
Py_XDECREF(object);
return nullptr;
}
/**
* Extracts the update message out of the datagram and applies it to the
* indicated object by calling the appropriate method.
*/
void Extension<DCField>::
receive_update(DCPacker &packer, PyObject *distobj) const {
if (_this->as_parameter() != nullptr) {
// If it's a parameter-type field, just store a new value on the object.
PyObject *value = unpack_args(packer);
if (value != nullptr) {
PyObject_SetAttrString(distobj, (char *)_this->_name.c_str(), value);
}
Py_DECREF(value);
} else {
// Otherwise, it must be an atomic or molecular field, so call the
// corresponding method.
if (!PyObject_HasAttrString(distobj, (char *)_this->_name.c_str())) {
// If there's no Python method to receive this message, don't bother
// unpacking it to a Python tuple--just skip past the message.
packer.unpack_skip();
} else {
// Otherwise, get a Python tuple from the args and call the Python
// method.
PyObject *args = unpack_args(packer);
if (args != nullptr) {
PyObject *func = PyObject_GetAttrString(distobj, (char *)_this->_name.c_str());
nassertv(func != nullptr);
PyObject *result;
{
#ifdef WITHIN_PANDA
PStatTimer timer(_this->_field_update_pcollector);
#endif
result = PyObject_CallObject(func, args);
}
Py_XDECREF(result);
Py_DECREF(func);
Py_DECREF(args);
}
}
}
}
/**
* Generates a datagram containing the message necessary to send an update for
* the indicated distributed object from the client.
*/
Datagram Extension<DCField>::
client_format_update(DOID_TYPE do_id, PyObject *args) const {
DCPacker packer;
packer.raw_pack_uint16(CLIENT_OBJECT_SET_FIELD);
packer.raw_pack_uint32(do_id);
packer.raw_pack_uint16(_this->_number);
packer.begin_pack(_this);
pack_args(packer, args);
if (!packer.end_pack()) {
return Datagram();
}
return Datagram(packer.get_data(), packer.get_length());
}
/**
* Generates a datagram containing the message necessary to send an update for
* the indicated distributed object from the AI.
*/
Datagram Extension<DCField>::
ai_format_update(DOID_TYPE do_id, CHANNEL_TYPE to_id, CHANNEL_TYPE from_id, PyObject *args) const {
DCPacker packer;
packer.raw_pack_uint8(1);
packer.RAW_PACK_CHANNEL(to_id);
packer.RAW_PACK_CHANNEL(from_id);
packer.raw_pack_uint16(STATESERVER_OBJECT_SET_FIELD);
packer.raw_pack_uint32(do_id);
packer.raw_pack_uint16(_this->_number);
packer.begin_pack(_this);
pack_args(packer, args);
if (!packer.end_pack()) {
return Datagram();
}
return Datagram(packer.get_data(), packer.get_length());
}
/**
* Generates a datagram containing the message necessary to send an update,
* with the msg type, for the indicated distributed object from the AI.
*/
Datagram Extension<DCField>::
ai_format_update_msg_type(DOID_TYPE do_id, CHANNEL_TYPE to_id, CHANNEL_TYPE from_id, int msg_type, PyObject *args) const {
DCPacker packer;
packer.raw_pack_uint8(1);
packer.RAW_PACK_CHANNEL(to_id);
packer.RAW_PACK_CHANNEL(from_id);
packer.raw_pack_uint16(msg_type);
packer.raw_pack_uint32(do_id);
packer.raw_pack_uint16(_this->_number);
packer.begin_pack(_this);
pack_args(packer, args);
if (!packer.end_pack()) {
return Datagram();
}
return Datagram(packer.get_data(), packer.get_length());
}
/**
* Returns the string representation of the indicated Python object.
*/
std::string Extension<DCField>::
get_pystr(PyObject *value) {
if (value == nullptr) {
return "(null)";
}
PyObject *str = PyObject_Str(value);
if (str != nullptr) {
#if PY_MAJOR_VERSION >= 3
std::string result = PyUnicode_AsUTF8(str);
#else
std::string result = PyString_AsString(str);
#endif
Py_DECREF(str);
return result;
}
PyObject *repr = PyObject_Repr(value);
if (repr != nullptr) {
#if PY_MAJOR_VERSION >= 3
std::string result = PyUnicode_AsUTF8(repr);
#else
std::string result = PyString_AsString(repr);
#endif
Py_DECREF(repr);
return result;
}
if (value->ob_type != nullptr) {
PyObject *typestr = PyObject_Str((PyObject *)(value->ob_type));
if (typestr != nullptr) {
#if PY_MAJOR_VERSION >= 3
std::string result = PyUnicode_AsUTF8(typestr);
#else
std::string result = PyString_AsString(typestr);
#endif
Py_DECREF(typestr);
return result;
}
}
return "(invalid object)";
}
#endif // HAVE_PYTHON

View File

@@ -0,0 +1,48 @@
/**
* PANDA 3D SOFTWARE
* Copyright (c) Carnegie Mellon University. All rights reserved.
*
* All use of this software is subject to the terms of the revised BSD
* license. You should have received a copy of this license along
* with this source code in a file named "LICENSE."
*
* @file dcField_ext.h
* @author CFSworks
* @date 2019-07-03
*/
#ifndef DCFIELD_EXT_H
#define DCFIELD_EXT_H
#include "dtoolbase.h"
#ifdef HAVE_PYTHON
#include "extension.h"
#include "dcField.h"
#include "py_panda.h"
/**
* This class defines the extension methods for DCField, which are called
* instead of any C++ methods with the same prototype.
*/
template<>
class Extension<DCField> : public ExtensionBase<DCField> {
public:
bool pack_args(DCPacker &packer, PyObject *sequence) const;
PyObject *unpack_args(DCPacker &packer) const;
void receive_update(DCPacker &packer, PyObject *distobj) const;
Datagram client_format_update(DOID_TYPE do_id, PyObject *args) const;
Datagram ai_format_update(DOID_TYPE do_id, CHANNEL_TYPE to_id, CHANNEL_TYPE from_id,
PyObject *args) const;
Datagram ai_format_update_msg_type(DOID_TYPE do_id, CHANNEL_TYPE to_id, CHANNEL_TYPE from_id,
int msg_type, PyObject *args) const;
static std::string get_pystr(PyObject *value);
};
#endif // HAVE_PYTHON
#endif // DCFIELD_EXT_H

View File

@@ -19,10 +19,6 @@
#include "dcSwitchParameter.h"
#include "dcClass.h"
#ifdef HAVE_PYTHON
#include "py_panda.h"
#endif
using std::istream;
using std::istringstream;
using std::ostream;
@@ -622,335 +618,6 @@ unpack_skip() {
}
}
#ifdef HAVE_PYTHON
/**
* Packs the Python object of whatever type into the packer. Each numeric
* object and string object maps to the corresponding pack_value() call; a
* tuple or sequence maps to a push() followed by all of the tuple's contents
* followed by a pop().
*/
void DCPacker::
pack_object(PyObject *object) {
nassertv(_mode == M_pack || _mode == M_repack);
DCPackType pack_type = get_pack_type();
// had to add this for basic 64 and unsigned data to get packed right .. Not
// sure if we can just do the rest this way..
switch(pack_type)
{
case PT_int64:
if(PyLong_Check(object))
{
pack_int64(PyLong_AsLongLong(object));
return;
}
#if PY_MAJOR_VERSION < 3
else if (PyInt_Check(object))
{
pack_int64(PyInt_AsLong(object));
return;
}
#endif
break;
case PT_uint64:
if(PyLong_Check(object))
{
pack_uint64(PyLong_AsUnsignedLongLong(object));
return;
}
#if PY_MAJOR_VERSION < 3
else if(PyInt_Check(object))
{
PyObject *obj1 = PyNumber_Long(object);
pack_int(PyLong_AsUnsignedLongLong(obj1));
Py_DECREF(obj1);
return;
}
#endif
break;
case PT_int:
if(PyLong_Check(object))
{
pack_int(PyLong_AsLong(object));
return;
}
#if PY_MAJOR_VERSION < 3
else if (PyInt_Check(object))
{
pack_int(PyInt_AsLong(object));
return;
}
#endif
break;
case PT_uint:
if(PyLong_Check(object))
{
pack_uint(PyLong_AsUnsignedLong(object));
return;
}
#if PY_MAJOR_VERSION < 3
else if (PyInt_Check(object))
{
PyObject *obj1 = PyNumber_Long(object);
pack_uint(PyLong_AsUnsignedLong(obj1));
Py_DECREF(obj1);
return;
}
#endif
break;
default:
break;
}
if (PyLong_Check(object)) {
pack_int(PyLong_AsLong(object));
#if PY_MAJOR_VERSION < 3
} else if (PyInt_Check(object)) {
pack_int(PyInt_AS_LONG(object));
#endif
} else if (PyFloat_Check(object)) {
pack_double(PyFloat_AS_DOUBLE(object));
} else if (PyLong_Check(object)) {
pack_int64(PyLong_AsLongLong(object));
#if PY_MAJOR_VERSION >= 3
} else if (PyUnicode_Check(object)) {
const char *buffer;
Py_ssize_t length;
buffer = PyUnicode_AsUTF8AndSize(object, &length);
if (buffer) {
pack_string(string(buffer, length));
}
} else if (PyBytes_Check(object)) {
const unsigned char *buffer;
Py_ssize_t length;
PyBytes_AsStringAndSize(object, (char **)&buffer, &length);
if (buffer) {
pack_blob(vector_uchar(buffer, buffer + length));
}
#else
} else if (PyString_Check(object) || PyUnicode_Check(object)) {
char *buffer;
Py_ssize_t length;
PyString_AsStringAndSize(object, &buffer, &length);
if (buffer) {
pack_string(string(buffer, length));
}
#endif
} else {
// For some reason, PySequence_Check() is incorrectly reporting that a
// class instance is a sequence, even if it doesn't provide __len__, so we
// double-check by testing for __len__ explicitly.
bool is_sequence =
(PySequence_Check(object) != 0) &&
(PyObject_HasAttrString(object, "__len__") != 0);
bool is_instance = false;
const DCClass *dclass = nullptr;
const DCPackerInterface *current_field = get_current_field();
if (current_field != nullptr) {
const DCClassParameter *class_param = get_current_field()->as_class_parameter();
if (class_param != nullptr) {
dclass = class_param->get_class();
if (dclass->has_class_def()) {
PyObject *class_def = dclass->get_class_def();
is_instance = (PyObject_IsInstance(object, dclass->get_class_def()) != 0);
Py_DECREF(class_def);
}
}
}
// If dclass is not NULL, the packer is expecting a class object. There
// are then two cases: (1) the user has supplied a matching class object,
// or (2) the user has supplied a sequence object. Unfortunately, it may
// be difficult to differentiate these two cases, since a class object may
// also be a sequence object.
// The rule to differentiate them is:
// (1) If the supplied class object is an instance of the expected class
// object, it is considered to be a class object.
// (2) Otherwise, if the supplied class object has a __len__() method
// (i.e. PySequence_Check() returns true), then it is considered to be a
// sequence.
// (3) Otherwise, it is considered to be a class object.
if (dclass != nullptr && (is_instance || !is_sequence)) {
// The supplied object is either an instance of the expected class
// object, or it is not a sequence--this is case (1) or (3).
pack_class_object(dclass, object);
} else if (is_sequence) {
// The supplied object is not an instance of the expected class object,
// but it is a sequence. This is case (2).
push();
int size = PySequence_Size(object);
for (int i = 0; i < size; ++i) {
PyObject *element = PySequence_GetItem(object, i);
if (element != nullptr) {
pack_object(element);
Py_DECREF(element);
} else {
std::cerr << "Unable to extract item " << i << " from sequence.\n";
}
}
pop();
} else {
// The supplied object is not a sequence, and we weren't expecting a
// class parameter. This is none of the above, an error.
ostringstream strm;
strm << "Don't know how to pack object: "
<< DCField::get_pystr(object);
nassert_raise(strm.str());
_pack_error = true;
}
}
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Unpacks a Python object of the appropriate type from the stream for the
* current field. This may be an integer or a string for a simple field
* object; if the current field represents a list of fields it will be a
* tuple.
*/
PyObject *DCPacker::
unpack_object() {
PyObject *object = nullptr;
DCPackType pack_type = get_pack_type();
switch (pack_type) {
case PT_invalid:
object = Py_None;
Py_INCREF(object);
unpack_skip();
break;
case PT_double:
{
double value = unpack_double();
object = PyFloat_FromDouble(value);
}
break;
case PT_int:
{
int value = unpack_int();
#if PY_MAJOR_VERSION >= 3
object = PyLong_FromLong(value);
#else
object = PyInt_FromLong(value);
#endif
}
break;
case PT_uint:
{
unsigned int value = unpack_uint();
#if PY_MAJOR_VERSION >= 3
object = PyLong_FromLong(value);
#else
if (value & 0x80000000) {
object = PyLong_FromUnsignedLong(value);
} else {
object = PyInt_FromLong(value);
}
#endif
}
break;
case PT_int64:
{
int64_t value = unpack_int64();
object = PyLong_FromLongLong(value);
}
break;
case PT_uint64:
{
uint64_t value = unpack_uint64();
object = PyLong_FromUnsignedLongLong(value);
}
break;
case PT_blob:
#if PY_MAJOR_VERSION >= 3
{
string str;
unpack_string(str);
object = PyBytes_FromStringAndSize(str.data(), str.size());
}
break;
#endif
// On Python 2, fall through to below.
case PT_string:
{
string str;
unpack_string(str);
#if PY_MAJOR_VERSION >= 3
object = PyUnicode_FromStringAndSize(str.data(), str.size());
#else
object = PyString_FromStringAndSize(str.data(), str.size());
#endif
}
break;
case PT_class:
{
const DCClassParameter *class_param = get_current_field()->as_class_parameter();
if (class_param != nullptr) {
const DCClass *dclass = class_param->get_class();
if (dclass->has_class_def()) {
// If we know what kind of class object this is and it has a valid
// constructor, create the class object instead of just a tuple.
object = unpack_class_object(dclass);
if (object == nullptr) {
std::cerr << "Unable to construct object of class "
<< dclass->get_name() << "\n";
} else {
break;
}
}
}
}
// Fall through (if no constructor)
// If we don't know what kind of class object it is, or it doesn't have a
// constructor, fall through and make a tuple.
default:
{
// First, build up a list from the nested objects.
object = PyList_New(0);
push();
while (more_nested_fields()) {
PyObject *element = unpack_object();
PyList_Append(object, element);
Py_DECREF(element);
}
pop();
if (pack_type != PT_array) {
// For these other kinds of objects, we'll convert the list into a
// tuple.
PyObject *tuple = PyList_AsTuple(object);
Py_DECREF(object);
object = tuple;
}
}
break;
}
nassertr(object != nullptr, nullptr);
return object;
}
#endif // HAVE_PYTHON
/**
* Parses an object's value according to the DC file syntax (e.g. as a
* default value string) and packs it. Returns true on success, false on a
@@ -1206,178 +873,3 @@ clear_stack() {
_stack = next;
}
}
#ifdef HAVE_PYTHON
/**
* Given that the current element is a ClassParameter for a Python class
* object, try to extract the appropriate values from the class object and
* pack in.
*/
void DCPacker::
pack_class_object(const DCClass *dclass, PyObject *object) {
push();
while (more_nested_fields() && !_pack_error) {
const DCField *field = get_current_field()->as_field();
nassertv(field != nullptr);
get_class_element(dclass, object, field);
}
pop();
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Given that the current element is a ClassParameter for a Python class for
* which we have a valid constructor, unpack it and fill in its values.
*/
PyObject *DCPacker::
unpack_class_object(const DCClass *dclass) {
PyObject *class_def = dclass->get_class_def();
nassertr(class_def != nullptr, nullptr);
PyObject *object = nullptr;
if (!dclass->has_constructor()) {
// If the class uses a default constructor, go ahead and create the Python
// object for it now.
object = PyObject_CallObject(class_def, nullptr);
if (object == nullptr) {
return nullptr;
}
}
push();
if (object == nullptr && more_nested_fields()) {
// The first nested field will be the constructor.
const DCField *field = get_current_field()->as_field();
nassertr(field != nullptr, object);
nassertr(field == dclass->get_constructor(), object);
set_class_element(class_def, object, field);
// By now, the object should have been constructed.
if (object == nullptr) {
return nullptr;
}
}
while (more_nested_fields()) {
const DCField *field = get_current_field()->as_field();
nassertr(field != nullptr, object);
set_class_element(class_def, object, field);
}
pop();
return object;
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Unpacks the current element and stuffs it on the Python class object in
* whatever way is appropriate.
*/
void DCPacker::
set_class_element(PyObject *class_def, PyObject *&object,
const DCField *field) {
string field_name = field->get_name();
DCPackType pack_type = get_pack_type();
if (field_name.empty()) {
switch (pack_type) {
case PT_class:
case PT_switch:
// If the field has no name, but it is one of these container objects,
// we want to unpack its nested objects directly into the class.
push();
while (more_nested_fields()) {
const DCField *field = get_current_field()->as_field();
nassertv(field != nullptr);
nassertv(object != nullptr);
set_class_element(class_def, object, field);
}
pop();
break;
default:
// Otherwise, we just skip over the field.
unpack_skip();
}
} else {
// If the field does have a name, we will want to store it on the class,
// either by calling a method (for a PT_field pack_type) or by setting a
// value (for any other kind of pack_type).
PyObject *element = unpack_object();
if (pack_type == PT_field) {
if (object == nullptr) {
// If the object hasn't been constructed yet, assume this is the
// constructor.
object = PyObject_CallObject(class_def, element);
} else {
if (PyObject_HasAttrString(object, (char *)field_name.c_str())) {
PyObject *func = PyObject_GetAttrString(object, (char *)field_name.c_str());
if (func != nullptr) {
PyObject *result = PyObject_CallObject(func, element);
Py_XDECREF(result);
Py_DECREF(func);
}
}
}
} else {
nassertv(object != nullptr);
PyObject_SetAttrString(object, (char *)field_name.c_str(), element);
}
Py_DECREF(element);
}
}
#endif // HAVE_PYTHON
#ifdef HAVE_PYTHON
/**
* Gets the current element from the Python object and packs it.
*/
void DCPacker::
get_class_element(const DCClass *dclass, PyObject *object,
const DCField *field) {
string field_name = field->get_name();
DCPackType pack_type = get_pack_type();
if (field_name.empty()) {
switch (pack_type) {
case PT_class:
case PT_switch:
// If the field has no name, but it is one of these container objects,
// we want to get its nested objects directly from the class.
push();
while (more_nested_fields() && !_pack_error) {
const DCField *field = get_current_field()->as_field();
nassertv(field != nullptr);
get_class_element(dclass, object, field);
}
pop();
break;
default:
// Otherwise, we just pack the default value.
pack_default_value();
}
} else {
// If the field does have a name, we will want to get it from the class
// and pack it. It just so happens that there's already a method that
// does this on DCClass.
if (!dclass->pack_required_field(*this, object, field)) {
_pack_error = true;
}
}
}
#endif // HAVE_PYTHON

View File

@@ -20,6 +20,10 @@
#include "dcPackData.h"
#include "dcPackerCatalog.h"
#ifdef WITHIN_PANDA
#include "extension.h"
#endif
class DCClass;
class DCSwitchParameter;
@@ -103,10 +107,8 @@ public:
PUBLISHED:
#ifdef HAVE_PYTHON
void pack_object(PyObject *object);
PyObject *unpack_object();
#endif
EXTENSION(void pack_object(PyObject *object));
EXTENSION(PyObject *unpack_object());
bool parse_and_pack(const std::string &formatted_object);
bool parse_and_pack(std::istream &in);
@@ -194,14 +196,12 @@ private:
void clear();
void clear_stack();
#ifdef HAVE_PYTHON
void pack_class_object(const DCClass *dclass, PyObject *object);
PyObject *unpack_class_object(const DCClass *dclass);
void set_class_element(PyObject *class_def, PyObject *&object,
const DCField *field);
void get_class_element(const DCClass *dclass, PyObject *object,
const DCField *field);
#endif
EXTENSION(void pack_class_object(const DCClass *dclass, PyObject *object));
EXTENSION(PyObject *unpack_class_object(const DCClass *dclass));
EXTENSION(void set_class_element(PyObject *class_def, PyObject *&object,
const DCField *field));
EXTENSION(void get_class_element(const DCClass *dclass, PyObject *object,
const DCField *field));
private:
enum Mode {
@@ -222,7 +222,7 @@ private:
const DCPackerCatalog *_catalog;
const DCPackerCatalog::LiveCatalog *_live_catalog;
class StackElement {
class EXPCL_DIRECT_DCPARSER StackElement {
public:
// As an optimization, we implement operator new and delete here to
// minimize allocation overhead during push() and pop().
@@ -257,6 +257,10 @@ private:
bool _parse_error;
bool _pack_error;
bool _range_error;
#ifdef WITHIN_PANDA
friend class Extension<DCPacker>;
#endif
};
#include "dcPacker.I"

View File

@@ -0,0 +1,508 @@
/**
* PANDA 3D SOFTWARE
* Copyright (c) Carnegie Mellon University. All rights reserved.
*
* All use of this software is subject to the terms of the revised BSD
* license. You should have received a copy of this license along
* with this source code in a file named "LICENSE."
*
* @file dcPacker_ext.cxx
* @author CFSworks
* @date 2019-07-03
*/
#include "dcPacker_ext.h"
#include "dcClass_ext.h"
#include "dcField_ext.h"
#include "dcClassParameter.h"
#ifdef HAVE_PYTHON
/**
* Packs the Python object of whatever type into the packer. Each numeric
* object and string object maps to the corresponding pack_value() call; a
* tuple or sequence maps to a push() followed by all of the tuple's contents
* followed by a pop().
*/
void Extension<DCPacker>::
pack_object(PyObject *object) {
nassertv(_this->_mode == DCPacker::Mode::M_pack ||
_this->_mode == DCPacker::Mode::M_repack);
DCPackType pack_type = _this->get_pack_type();
// had to add this for basic 64 and unsigned data to get packed right .. Not
// sure if we can just do the rest this way..
switch(pack_type) {
case PT_int64:
if (PyLong_Check(object)) {
_this->pack_int64(PyLong_AsLongLong(object));
return;
}
#if PY_MAJOR_VERSION < 3
else if (PyInt_Check(object)) {
_this->pack_int64(PyInt_AsLong(object));
return;
}
#endif
break;
case PT_uint64:
if (PyLong_Check(object)) {
_this->pack_uint64(PyLong_AsUnsignedLongLong(object));
return;
}
#if PY_MAJOR_VERSION < 3
else if (PyInt_Check(object)) {
PyObject *obj1 = PyNumber_Long(object);
_this->pack_int(PyLong_AsUnsignedLongLong(obj1));
Py_DECREF(obj1);
return;
}
#endif
break;
case PT_int:
if (PyLong_Check(object)) {
_this->pack_int(PyLong_AsLong(object));
return;
}
#if PY_MAJOR_VERSION < 3
else if (PyInt_Check(object)) {
_this->pack_int(PyInt_AsLong(object));
return;
}
#endif
break;
case PT_uint:
if (PyLong_Check(object)) {
_this->pack_uint(PyLong_AsUnsignedLong(object));
return;
}
#if PY_MAJOR_VERSION < 3
else if (PyInt_Check(object)) {
PyObject *obj1 = PyNumber_Long(object);
_this->pack_uint(PyLong_AsUnsignedLong(obj1));
Py_DECREF(obj1);
return;
}
#endif
break;
default:
break;
}
if (PyLong_Check(object)) {
_this->pack_int(PyLong_AsLong(object));
#if PY_MAJOR_VERSION < 3
} else if (PyInt_Check(object)) {
_this->pack_int(PyInt_AS_LONG(object));
#endif
} else if (PyFloat_Check(object)) {
_this->pack_double(PyFloat_AS_DOUBLE(object));
} else if (PyLong_Check(object)) {
_this->pack_int64(PyLong_AsLongLong(object));
#if PY_MAJOR_VERSION >= 3
} else if (PyUnicode_Check(object)) {
const char *buffer;
Py_ssize_t length;
buffer = PyUnicode_AsUTF8AndSize(object, &length);
if (buffer) {
_this->pack_string(std::string(buffer, length));
}
} else if (PyBytes_Check(object)) {
const unsigned char *buffer;
Py_ssize_t length;
PyBytes_AsStringAndSize(object, (char **)&buffer, &length);
if (buffer) {
_this->pack_blob(vector_uchar(buffer, buffer + length));
}
#else
} else if (PyString_Check(object) || PyUnicode_Check(object)) {
char *buffer;
Py_ssize_t length;
PyString_AsStringAndSize(object, &buffer, &length);
if (buffer) {
_this->pack_string(std::string(buffer, length));
}
#endif
} else {
// For some reason, PySequence_Check() is incorrectly reporting that a
// class instance is a sequence, even if it doesn't provide __len__, so we
// double-check by testing for __len__ explicitly.
bool is_sequence =
(PySequence_Check(object) != 0) &&
(PyObject_HasAttrString(object, "__len__") != 0);
bool is_instance = false;
const DCClass *dclass = nullptr;
const DCPackerInterface *current_field = _this->get_current_field();
if (current_field != nullptr) {
const DCClassParameter *class_param = _this->get_current_field()->as_class_parameter();
if (class_param != nullptr) {
dclass = class_param->get_class();
if (invoke_extension(dclass).has_class_def()) {
PyObject *class_def = invoke_extension(dclass).get_class_def();
is_instance = (PyObject_IsInstance(object, invoke_extension(dclass).get_class_def()) != 0);
Py_DECREF(class_def);
}
}
}
// If dclass is not NULL, the packer is expecting a class object. There
// are then two cases: (1) the user has supplied a matching class object,
// or (2) the user has supplied a sequence object. Unfortunately, it may
// be difficult to differentiate these two cases, since a class object may
// also be a sequence object.
// The rule to differentiate them is:
// (1) If the supplied class object is an instance of the expected class
// object, it is considered to be a class object.
// (2) Otherwise, if the supplied class object has a __len__() method
// (i.e. PySequence_Check() returns true), then it is considered to be a
// sequence.
// (3) Otherwise, it is considered to be a class object.
if (dclass != nullptr && (is_instance || !is_sequence)) {
// The supplied object is either an instance of the expected class
// object, or it is not a sequence--this is case (1) or (3).
pack_class_object(dclass, object);
} else if (is_sequence) {
// The supplied object is not an instance of the expected class object,
// but it is a sequence. This is case (2).
_this->push();
int size = PySequence_Size(object);
for (int i = 0; i < size; ++i) {
PyObject *element = PySequence_GetItem(object, i);
if (element != nullptr) {
pack_object(element);
Py_DECREF(element);
} else {
std::cerr << "Unable to extract item " << i << " from sequence.\n";
}
}
_this->pop();
} else {
// The supplied object is not a sequence, and we weren't expecting a
// class parameter. This is none of the above, an error.
std::ostringstream strm;
strm << "Don't know how to pack object: "
<< Extension<DCField>::get_pystr(object);
nassert_raise(strm.str());
_this->_pack_error = true;
}
}
}
/**
* Unpacks a Python object of the appropriate type from the stream for the
* current field. This may be an integer or a string for a simple field
* object; if the current field represents a list of fields it will be a
* tuple.
*/
PyObject *Extension<DCPacker>::
unpack_object() {
PyObject *object = nullptr;
DCPackType pack_type = _this->get_pack_type();
switch (pack_type) {
case PT_invalid:
object = Py_None;
Py_INCREF(object);
_this->unpack_skip();
break;
case PT_double:
{
double value = _this->unpack_double();
object = PyFloat_FromDouble(value);
}
break;
case PT_int:
{
int value = _this->unpack_int();
#if PY_MAJOR_VERSION >= 3
object = PyLong_FromLong(value);
#else
object = PyInt_FromLong(value);
#endif
}
break;
case PT_uint:
{
unsigned int value = _this->unpack_uint();
#if PY_MAJOR_VERSION >= 3
object = PyLong_FromLong(value);
#else
if (value & 0x80000000) {
object = PyLong_FromUnsignedLong(value);
} else {
object = PyInt_FromLong(value);
}
#endif
}
break;
case PT_int64:
{
int64_t value = _this->unpack_int64();
object = PyLong_FromLongLong(value);
}
break;
case PT_uint64:
{
uint64_t value = _this->unpack_uint64();
object = PyLong_FromUnsignedLongLong(value);
}
break;
case PT_blob:
#if PY_MAJOR_VERSION >= 3
{
std::string str;
_this->unpack_string(str);
object = PyBytes_FromStringAndSize(str.data(), str.size());
}
break;
#endif
// On Python 2, fall through to below.
case PT_string:
{
std::string str;
_this->unpack_string(str);
#if PY_MAJOR_VERSION >= 3
object = PyUnicode_FromStringAndSize(str.data(), str.size());
#else
object = PyString_FromStringAndSize(str.data(), str.size());
#endif
}
break;
case PT_class:
{
const DCClassParameter *class_param = _this->get_current_field()->as_class_parameter();
if (class_param != nullptr) {
const DCClass *dclass = class_param->get_class();
if (invoke_extension(dclass).has_class_def()) {
// If we know what kind of class object this is and it has a valid
// constructor, create the class object instead of just a tuple.
object = unpack_class_object(dclass);
if (object == nullptr) {
std::cerr << "Unable to construct object of class "
<< dclass->get_name() << "\n";
} else {
break;
}
}
}
}
// Fall through (if no constructor)
// If we don't know what kind of class object it is, or it doesn't have a
// constructor, fall through and make a tuple.
default:
{
// First, build up a list from the nested objects.
object = PyList_New(0);
_this->push();
while (_this->more_nested_fields()) {
PyObject *element = unpack_object();
PyList_Append(object, element);
Py_DECREF(element);
}
_this->pop();
if (pack_type != PT_array) {
// For these other kinds of objects, we'll convert the list into a
// tuple.
PyObject *tuple = PyList_AsTuple(object);
Py_DECREF(object);
object = tuple;
}
}
break;
}
nassertr(object != nullptr, nullptr);
return object;
}
/**
* Given that the current element is a ClassParameter for a Python class
* object, try to extract the appropriate values from the class object and
* pack in.
*/
void Extension<DCPacker>::
pack_class_object(const DCClass *dclass, PyObject *object) {
_this->push();
while (_this->more_nested_fields() && !_this->_pack_error) {
const DCField *field = _this->get_current_field()->as_field();
nassertv(field != nullptr);
get_class_element(dclass, object, field);
}
_this->pop();
}
/**
* Given that the current element is a ClassParameter for a Python class for
* which we have a valid constructor, unpack it and fill in its values.
*/
PyObject *Extension<DCPacker>::
unpack_class_object(const DCClass *dclass) {
PyObject *class_def = invoke_extension(dclass).get_class_def();
nassertr(class_def != nullptr, nullptr);
PyObject *object = nullptr;
if (!dclass->has_constructor()) {
// If the class uses a default constructor, go ahead and create the Python
// object for it now.
object = PyObject_CallObject(class_def, nullptr);
if (object == nullptr) {
return nullptr;
}
}
_this->push();
if (object == nullptr && _this->more_nested_fields()) {
// The first nested field will be the constructor.
const DCField *field = _this->get_current_field()->as_field();
nassertr(field != nullptr, object);
nassertr(field == dclass->get_constructor(), object);
set_class_element(class_def, object, field);
// By now, the object should have been constructed.
if (object == nullptr) {
return nullptr;
}
}
while (_this->more_nested_fields()) {
const DCField *field = _this->get_current_field()->as_field();
nassertr(field != nullptr, object);
set_class_element(class_def, object, field);
}
_this->pop();
return object;
}
/**
* Unpacks the current element and stuffs it on the Python class object in
* whatever way is appropriate.
*/
void Extension<DCPacker>::
set_class_element(PyObject *class_def, PyObject *&object,
const DCField *field) {
std::string field_name = field->get_name();
DCPackType pack_type = _this->get_pack_type();
if (field_name.empty()) {
switch (pack_type) {
case PT_class:
case PT_switch:
// If the field has no name, but it is one of these container objects,
// we want to unpack its nested objects directly into the class.
_this->push();
while (_this->more_nested_fields()) {
const DCField *field = _this->get_current_field()->as_field();
nassertv(field != nullptr);
nassertv(object != nullptr);
set_class_element(class_def, object, field);
}
_this->pop();
break;
default:
// Otherwise, we just skip over the field.
_this->unpack_skip();
}
} else {
// If the field does have a name, we will want to store it on the class,
// either by calling a method (for a PT_field pack_type) or by setting a
// value (for any other kind of pack_type).
PyObject *element = unpack_object();
if (pack_type == PT_field) {
if (object == nullptr) {
// If the object hasn't been constructed yet, assume this is the
// constructor.
object = PyObject_CallObject(class_def, element);
} else {
if (PyObject_HasAttrString(object, (char *)field_name.c_str())) {
PyObject *func = PyObject_GetAttrString(object, (char *)field_name.c_str());
if (func != nullptr) {
PyObject *result = PyObject_CallObject(func, element);
Py_XDECREF(result);
Py_DECREF(func);
}
}
}
} else {
nassertv(object != nullptr);
PyObject_SetAttrString(object, (char *)field_name.c_str(), element);
}
Py_DECREF(element);
}
}
/**
* Gets the current element from the Python object and packs it.
*/
void Extension<DCPacker>::
get_class_element(const DCClass *dclass, PyObject *object,
const DCField *field) {
std::string field_name = field->get_name();
DCPackType pack_type = _this->get_pack_type();
if (field_name.empty()) {
switch (pack_type) {
case PT_class:
case PT_switch:
// If the field has no name, but it is one of these container objects,
// we want to get its nested objects directly from the class.
_this->push();
while (_this->more_nested_fields() && !_this->_pack_error) {
const DCField *field = _this->get_current_field()->as_field();
nassertv(field != nullptr);
get_class_element(dclass, object, field);
}
_this->pop();
break;
default:
// Otherwise, we just pack the default value.
_this->pack_default_value();
}
} else {
// If the field does have a name, we will want to get it from the class
// and pack it. It just so happens that there's already a method that
// does this on DCClass.
if (!invoke_extension(dclass).pack_required_field(*_this, object, field)) {
_this->_pack_error = true;
}
}
}
#endif // HAVE_PYTHON

View File

@@ -0,0 +1,45 @@
/**
* PANDA 3D SOFTWARE
* Copyright (c) Carnegie Mellon University. All rights reserved.
*
* All use of this software is subject to the terms of the revised BSD
* license. You should have received a copy of this license along
* with this source code in a file named "LICENSE."
*
* @file dcPacker_ext.h
* @author CFSworks
* @date 2019-07-03
*/
#ifndef DCPACKER_EXT_H
#define DCPACKER_EXT_H
#include "dtoolbase.h"
#ifdef HAVE_PYTHON
#include "extension.h"
#include "dcPacker.h"
#include "py_panda.h"
/**
* This class defines the extension methods for DCPacker, which are called
* instead of any C++ methods with the same prototype.
*/
template<>
class Extension<DCPacker> : public ExtensionBase<DCPacker> {
public:
void pack_object(PyObject *object);
PyObject *unpack_object();
void pack_class_object(const DCClass *dclass, PyObject *object);
PyObject *unpack_class_object(const DCClass *dclass);
void set_class_element(PyObject *class_def, PyObject *&object,
const DCField *field);
void get_class_element(const DCClass *dclass, PyObject *object,
const DCField *field);
};
#endif // HAVE_PYTHON
#endif // DCPACKER_EXT_H

View File

@@ -0,0 +1,3 @@
#include "dcClass_ext.cxx"
#include "dcField_ext.cxx"
#include "dcPacker_ext.cxx"

View File

@@ -26,6 +26,7 @@
#ifdef HAVE_PYTHON
#include "py_panda.h"
#include "dcClass_ext.h"
#endif
using std::endl;
@@ -736,7 +737,7 @@ handle_update_field() {
// get into trouble if it tried to delete the object from the doId2do
// map.
Py_INCREF(distobj);
dclass->receive_update(distobj, _di);
invoke_extension(dclass).receive_update(distobj, _di);
Py_DECREF(distobj);
if (PyErr_Occurred()) {
@@ -820,7 +821,7 @@ handle_update_field_owner() {
// make a copy of the datagram iterator so that we can use the main
// iterator for the non-owner update
DatagramIterator _odi(_di);
dclass->receive_update(distobjOV, _odi);
invoke_extension(dclass).receive_update(distobjOV, _odi);
Py_DECREF(distobjOV);
if (PyErr_Occurred()) {
@@ -861,7 +862,7 @@ handle_update_field_owner() {
// get into trouble if it tried to delete the object from the doId2do
// map.
Py_INCREF(distobj);
dclass->receive_update(distobj, _di);
invoke_extension(dclass).receive_update(distobj, _di);
Py_DECREF(distobj);
if (PyErr_Occurred()) {

View File

@@ -53,7 +53,7 @@ class SocketStream;
* the C++ layer, while server messages that are not understood by the C++
* layer are returned up to the Python layer for processing.
*/
class EXPCL_DIRECT_DISTRIBUTED CConnectionRepository {
class CConnectionRepository {
PUBLISHED:
explicit CConnectionRepository(bool has_owner_view = false,
bool threaded_net = false);

View File

@@ -27,7 +27,7 @@ class CConnectionRepository;
* This class defines some basic methods of DistributedSmoothNodeBase which
* have been moved into C++ as a performance optimization.
*/
class EXPCL_DIRECT_DISTRIBUTED CDistributedSmoothNodeBase {
class CDistributedSmoothNodeBase {
PUBLISHED:
CDistributedSmoothNodeBase();
~CDistributedSmoothNodeBase();

View File

@@ -23,10 +23,10 @@
NotifyCategoryDecl(distributed, EXPCL_DIRECT_DISTRIBUTED, EXPTP_DIRECT_DISTRIBUTED);
extern ConfigVariableInt game_server_timeout_ms;
extern ConfigVariableDouble min_lag;
extern ConfigVariableDouble max_lag;
extern ConfigVariableBool handle_datagrams_internally;
extern EXPCL_DIRECT_DISTRIBUTED ConfigVariableInt game_server_timeout_ms;
extern EXPCL_DIRECT_DISTRIBUTED ConfigVariableDouble min_lag;
extern EXPCL_DIRECT_DISTRIBUTED ConfigVariableDouble max_lag;
extern EXPCL_DIRECT_DISTRIBUTED ConfigVariableBool handle_datagrams_internally;
extern EXPCL_DIRECT_DISTRIBUTED void init_libdistributed();

View File

@@ -5256,11 +5256,11 @@ if (PkgSkip("DIRECT")==0):
if (PkgSkip("DIRECT")==0):
OPTS=['DIR:direct/src/dcparser', 'BUILDING:DIRECT_DCPARSER', 'WITHINPANDA', 'BISONPREFIX_dcyy']
CreateFile(GetOutputDir()+"/include/dcParser.h")
PyTargetAdd('p3dcparser_dcParser.obj', opts=OPTS, input='dcParser.yxx')
TargetAdd('p3dcparser_dcParser.obj', opts=OPTS, input='dcParser.yxx')
#TargetAdd('dcParser.h', input='p3dcparser_dcParser.obj', opts=['DEPENDENCYONLY'])
PyTargetAdd('p3dcparser_dcLexer.obj', opts=OPTS, input='dcLexer.lxx')
PyTargetAdd('p3dcparser_composite1.obj', opts=OPTS, input='p3dcparser_composite1.cxx')
PyTargetAdd('p3dcparser_composite2.obj', opts=OPTS, input='p3dcparser_composite2.cxx')
TargetAdd('p3dcparser_dcLexer.obj', opts=OPTS, input='dcLexer.lxx')
TargetAdd('p3dcparser_composite1.obj', opts=OPTS, input='p3dcparser_composite1.cxx')
TargetAdd('p3dcparser_composite2.obj', opts=OPTS, input='p3dcparser_composite2.cxx')
OPTS=['DIR:direct/src/dcparser', 'WITHINPANDA']
IGATEFILES=GetDirectoryContents('direct/src/dcparser', ["*.h", "*_composite*.cxx"])
@@ -5268,6 +5268,7 @@ if (PkgSkip("DIRECT")==0):
if "dcmsgtypes.h" in IGATEFILES: IGATEFILES.remove('dcmsgtypes.h')
TargetAdd('libp3dcparser.in', opts=OPTS, input=IGATEFILES)
TargetAdd('libp3dcparser.in', opts=['IMOD:panda3d.direct', 'ILIB:libp3dcparser', 'SRCDIR:direct/src/dcparser'])
PyTargetAdd('p3dcparser_ext_composite.obj', opts=OPTS, input='p3dcparser_ext_composite.cxx')
#
# DIRECTORY: direct/src/deadrec/
@@ -5289,13 +5290,13 @@ if (PkgSkip("DIRECT")==0):
if (PkgSkip("DIRECT")==0):
OPTS=['DIR:direct/src/distributed', 'DIR:direct/src/dcparser', 'WITHINPANDA', 'BUILDING:DIRECT', 'OPENSSL']
TargetAdd('p3distributed_config_distributed.obj', opts=OPTS, input='config_distributed.cxx')
PyTargetAdd('p3distributed_cConnectionRepository.obj', opts=OPTS, input='cConnectionRepository.cxx')
PyTargetAdd('p3distributed_cDistributedSmoothNodeBase.obj', opts=OPTS, input='cDistributedSmoothNodeBase.cxx')
OPTS=['DIR:direct/src/distributed', 'WITHINPANDA', 'OPENSSL']
IGATEFILES=GetDirectoryContents('direct/src/distributed', ["*.h", "*.cxx"])
TargetAdd('libp3distributed.in', opts=OPTS, input=IGATEFILES)
TargetAdd('libp3distributed.in', opts=['IMOD:panda3d.direct', 'ILIB:libp3distributed', 'SRCDIR:direct/src/distributed'])
PyTargetAdd('p3distributed_cConnectionRepository.obj', opts=OPTS, input='cConnectionRepository.cxx')
PyTargetAdd('p3distributed_cDistributedSmoothNodeBase.obj', opts=OPTS, input='cDistributedSmoothNodeBase.cxx')
#
# DIRECTORY: direct/src/interval/
@@ -5345,10 +5346,15 @@ if (PkgSkip("DIRECT")==0):
if (PkgSkip("DIRECT")==0):
TargetAdd('libp3direct.dll', input='p3directbase_directbase.obj')
TargetAdd('libp3direct.dll', input='p3dcparser_composite1.obj')
TargetAdd('libp3direct.dll', input='p3dcparser_composite2.obj')
TargetAdd('libp3direct.dll', input='p3dcparser_dcParser.obj')
TargetAdd('libp3direct.dll', input='p3dcparser_dcLexer.obj')
TargetAdd('libp3direct.dll', input='p3showbase_showBase.obj')
if GetTarget() == 'darwin':
TargetAdd('libp3direct.dll', input='p3showbase_showBase_assist.obj')
TargetAdd('libp3direct.dll', input='p3deadrec_composite1.obj')
TargetAdd('libp3direct.dll', input='p3distributed_config_distributed.obj')
TargetAdd('libp3direct.dll', input='p3interval_composite1.obj')
TargetAdd('libp3direct.dll', input='p3motiontrail_config_motiontrail.obj')
TargetAdd('libp3direct.dll', input='p3motiontrail_cMotionTrail.obj')
@@ -5373,11 +5379,7 @@ if (PkgSkip("DIRECT")==0):
# These are part of direct.pyd, not libp3direct.dll, because they rely on
# the Python libraries. If a C++ user needs these modules, we can move them
# back and filter out the Python-specific code.
PyTargetAdd('direct.pyd', input='p3dcparser_composite1.obj')
PyTargetAdd('direct.pyd', input='p3dcparser_composite2.obj')
PyTargetAdd('direct.pyd', input='p3dcparser_dcParser.obj')
PyTargetAdd('direct.pyd', input='p3dcparser_dcLexer.obj')
PyTargetAdd('direct.pyd', input='p3distributed_config_distributed.obj')
PyTargetAdd('direct.pyd', input='p3dcparser_ext_composite.obj')
PyTargetAdd('direct.pyd', input='p3distributed_cConnectionRepository.obj')
PyTargetAdd('direct.pyd', input='p3distributed_cDistributedSmoothNodeBase.obj')
@@ -5391,18 +5393,13 @@ if (PkgSkip("DIRECT")==0):
# DIRECTORY: direct/src/dcparse/
#
if (PkgSkip("PYTHON")==0 and PkgSkip("DIRECT")==0 and not RTDIST and not RUNTIME):
if (PkgSkip("DIRECT")==0 and not RTDIST and not RUNTIME):
OPTS=['DIR:direct/src/dcparse', 'DIR:direct/src/dcparser', 'WITHINPANDA', 'ADVAPI']
PyTargetAdd('dcparse_dcparse.obj', opts=OPTS, input='dcparse.cxx')
PyTargetAdd('p3dcparse.exe', input='p3dcparser_composite1.obj')
PyTargetAdd('p3dcparse.exe', input='p3dcparser_composite2.obj')
PyTargetAdd('p3dcparse.exe', input='p3dcparser_dcParser.obj')
PyTargetAdd('p3dcparse.exe', input='p3dcparser_dcLexer.obj')
PyTargetAdd('p3dcparse.exe', input='dcparse_dcparse.obj')
PyTargetAdd('p3dcparse.exe', input='libp3direct.dll')
PyTargetAdd('p3dcparse.exe', input=COMMON_PANDA_LIBS)
PyTargetAdd('p3dcparse.exe', input='libp3pystub.lib')
PyTargetAdd('p3dcparse.exe', opts=['ADVAPI'])
TargetAdd('dcparse_dcparse.obj', opts=OPTS, input='dcparse.cxx')
TargetAdd('p3dcparse.exe', input='dcparse_dcparse.obj')
TargetAdd('p3dcparse.exe', input='libp3direct.dll')
TargetAdd('p3dcparse.exe', input=COMMON_PANDA_LIBS)
TargetAdd('p3dcparse.exe', opts=['ADVAPI'])
#
# DIRECTORY: direct/src/plugin/