Parallelize CDC by directory

Fixes #66.
This commit is contained in:
Francesco Mazzoli
2023-11-18 11:40:16 +00:00
committed by Francesco Mazzoli
parent 7e7ba6b04b
commit c5562c7ca3
7 changed files with 878 additions and 523 deletions

View File

@@ -6,13 +6,14 @@
#include <netinet/ip.h>
#include <sys/socket.h>
#include <atomic>
#include <sys/epoll.h>
#include <fcntl.h>
#include <optional>
#include <thread>
#include <unordered_map>
#include <arpa/inet.h>
#include <unordered_set>
#include <map>
#include <poll.h>
#include "Bincode.hpp"
#include "CDC.hpp"
@@ -41,9 +42,6 @@ struct CDCShared {
std::array<ShardInfo, 256> shards;
// How long it took us to process the entire request, from parse to response.
std::array<Timings, maxCDCMessageKind+1> timingsTotal;
// How long it took to process the request, from when it exited the queue to
// when it finished executing.
std::array<Timings, maxCDCMessageKind+1> timingsProcess;
std::array<ErrorCount, maxCDCMessageKind+1> errors;
// right now we have a max of 200req/s and we send the metrics every minute or so, so
// this should cover us for at least 1.5mins. Power of two is good for mod.
@@ -57,7 +55,6 @@ struct CDCShared {
ownPorts[1].store(0);
for (CDCMessageKind kind : allCDCMessageKind) {
timingsTotal[(int)kind] = Timings::Standard();
timingsProcess[(int)kind] = Timings::Standard();
}
for (int i = 0; i < inFlightTxnsWindow.size(); i++) {
inFlightTxnsWindow[i] = 0;
@@ -66,13 +63,15 @@ struct CDCShared {
};
struct InFlightShardRequest {
uint64_t txnId; // the txn id that requested this shard request
CDCTxnId txnId; // the txn id that requested this shard request
EggsTime sentAt;
uint64_t shardRequestId;
ShardId shid;
};
struct InFlightCDCRequest {
bool hasClient;
uint64_t lastSentRequestId;
// if hasClient=false, the following is all garbage.
uint64_t cdcRequestId;
EggsTime receivedAt;
struct sockaddr_in clientAddr;
@@ -114,10 +113,70 @@ struct InFlightCDCRequestKey {
template <>
struct std::hash<InFlightCDCRequestKey> {
std::size_t operator()(const InFlightCDCRequestKey& key) const {
return key.requestId ^ (((uint64_t)key.port << 32) | ((uint64_t)key.ip));
return std::hash<uint64_t>{}(key.requestId ^ (((uint64_t)key.port << 32) | ((uint64_t)key.ip)));
}
};
struct InFlightShardRequests {
private:
using RequestsMap = std::unordered_map<uint64_t, InFlightShardRequest>;
RequestsMap _reqs;
std::map<EggsTime, uint64_t> _pq;
public:
size_t size() const {
return _reqs.size();
}
RequestsMap::const_iterator oldest() const {
ALWAYS_ASSERT(size() > 0);
auto reqByTime = _pq.begin();
return _reqs.find(reqByTime->second);
}
RequestsMap::const_iterator find(uint64_t reqId) const {
return _reqs.find(reqId);
}
RequestsMap::const_iterator end() {
return _reqs.end();
}
void erase(RequestsMap::const_iterator iterator) {
_pq.erase(iterator->second.sentAt);
_reqs.erase(iterator);
}
void insert(uint64_t reqId, const InFlightShardRequest& req) {
auto [reqIt, inserted] = _reqs.insert({reqId, req});
// TODO i think we can just assert inserted, we never need this
// functionality
if (inserted) {
// we have never seen this shard request.
// technically we could get the same time twice, but in practice
// we won't, so just assert it.
ALWAYS_ASSERT(_pq.insert({req.sentAt, reqId}).second);
} else {
// we had already seen this. make sure it's for the same stuff, and update pq.
ALWAYS_ASSERT(reqIt->second.txnId == req.txnId);
ALWAYS_ASSERT(reqIt->second.shid == req.shid);
ALWAYS_ASSERT(_pq.erase(reqIt->second.sentAt) == 1); // must be already present
ALWAYS_ASSERT(_pq.insert({req.sentAt, reqId}).second); // insert with new time
reqIt->second.sentAt = req.sentAt; // update time in existing entry
}
}
};
struct CDCReqInfo {
uint64_t reqId;
struct sockaddr_in clientAddr;
EggsTime receivedAt;
int sock;
};
struct CDCServer : Loop {
private:
CDCShared& _shared;
@@ -126,19 +185,21 @@ private:
uint64_t _currentLogIndex;
std::vector<char> _recvBuf;
std::vector<char> _sendBuf;
CDCReqContainer _cdcReqContainer;
ShardRespContainer _shardRespContainer;
std::vector<CDCReqContainer> _cdcReqs;
std::vector<CDCReqInfo> _cdcReqsInfo;
std::vector<CDCTxnId> _cdcReqsTxnIds;
std::vector<CDCShardResp> _shardResps;
CDCStep _step;
uint64_t _shardRequestIdCounter;
int _epoll;
std::array<int, 4> _socks;
struct epoll_event _events[4];
// order: CDC, shard, CDC, shard
// length will be 2 or 4 depending on whether we have a second ip
std::vector<struct pollfd> _socks;
AES128Key _expandedCDCKey;
Duration _shardTimeout;
uint64_t _maximumEnqueuedRequests;
// The requests we've enqueued, but haven't completed yet, with
// where to send the response. Indexed by txn id.
std::unordered_map<uint64_t, InFlightCDCRequest> _inFlightTxns;
std::unordered_map<CDCTxnId, InFlightCDCRequest> _inFlightTxns;
uint64_t _inFlightTxnsWindowCursor;
// The enqueued requests, but indexed by req id + ip + port. We
// store this so that we can drop repeated requests which are
@@ -148,27 +209,7 @@ private:
// a useful optimization for now that we live with it.
std::unordered_set<InFlightCDCRequestKey> _inFlightCDCReqs;
// The _shard_ request we're currently waiting for, if any.
std::optional<InFlightShardRequest> _inFlightShardReq;
// This is just used to calculate the timings
uint64_t _runningTxn;
CDCMessageKind _runningTxnKind;
EggsTime _runningTxnStartedAt;
CDCStatus _status;
void _updateProcessTimings() {
if (_status.runningTxn != _runningTxn) { // we've got something new
EggsTime now = eggsNow();
if (_runningTxn != 0) { // something has finished running
_shared.timingsProcess[(int)_runningTxnKind].add(now - _runningTxnStartedAt);
_runningTxn = 0;
}
if (_status.runningTxn != 0) { // something has started running
_runningTxn = _status.runningTxn;
_runningTxnKind = _status.runningTxnKind;
_runningTxnStartedAt = now;
}
}
}
InFlightShardRequests _inFlightShardReqs;
public:
CDCServer(Logger& logger, std::shared_ptr<XmonAgent>& xmon, const CDCOptions& options, CDCShared& shared) :
@@ -178,14 +219,13 @@ public:
_ipPorts(options.ipPorts),
_recvBuf(DEFAULT_UDP_MTU),
_sendBuf(DEFAULT_UDP_MTU),
_shardRequestIdCounter(0),
// important to not catch stray requests from previous executions
_shardRequestIdCounter(wyhash64_rand()),
_shardTimeout(options.shardTimeout),
_maximumEnqueuedRequests(options.maximumEnqueuedRequests),
_inFlightTxnsWindowCursor(0),
_runningTxn(0)
_inFlightTxnsWindowCursor(0)
{
_currentLogIndex = _shared.db.lastAppliedLogEntry();
memset(&_socks[0], 0, sizeof(_socks));
expandKey(CDCKey, _expandedCDCKey);
}
@@ -201,32 +241,70 @@ public:
_seenShards = true;
_initAfterShardsSeen();
}
// clear internal buffers
_cdcReqs.clear();
_cdcReqsInfo.clear();
_cdcReqsTxnIds.clear();
_shardResps.clear();
// Process CDC requests and shard responses
{
auto now = eggsNow();
if (_inFlightShardReq && (now - _inFlightShardReq->sentAt) > _shardTimeout) {
LOG_DEBUG(_env, "in-flight shard request %s was sent at %s, it's now %s, timing out (%s > %s)", _inFlightShardReq->shardRequestId, _inFlightShardReq->sentAt, now, (now - _inFlightShardReq->sentAt), _shardTimeout);
auto shid = _inFlightShardReq->shid;
_inFlightShardReq.reset();
_handleShardError(shid, EggsError::TIMEOUT);
for (;;) {
if (_inFlightShardReqs.size() == 0) { break; }
auto oldest = _inFlightShardReqs.oldest();
if ((now - oldest->second.sentAt) < _shardTimeout) { break; }
LOG_DEBUG(_env, "in-flight shard request %s was sent at %s, it's now %s, will time out (%s > %s)", oldest->first, oldest->second.sentAt, now, (now - oldest->second.sentAt), _shardTimeout);
auto resp = _prepareCDCShardResp(oldest->first); // erases `oldest`
ALWAYS_ASSERT(resp != nullptr); // must be there, we've just timed it out
resp->err = EggsError::TIMEOUT;
}
}
// 10ms timeout for prompt termination and for shard resps timeouts
int nfds = epoll_wait(_epoll, _events, _socks.size(), 10 /*milliseconds*/);
if (nfds < 0) {
throw SYSCALL_EXCEPTION("epoll_wait");
int ret = poll(_socks.data(), _socks.size(), 10);
if (ret < 0) {
throw SYSCALL_EXCEPTION("poll");
}
for (int i = 0; i < nfds; i++) {
const auto& event = _events[i];
if (event.data.u64%2 == 0) {
_drainCDCSock(_socks[event.data.u64]);
} else {
_drainShardSock(_socks[event.data.u64]);
// drain sockets
// TODO drain shard sockets first, put an upper bound on the number
// of accepted packets, so that we prioritize completing outstanding
// txns.
for (int i = 0; i < _socks.size(); i++) {
const auto& pollFd = _socks[i];
if (pollFd.events & POLLIN) {
if (i%2 == 0) {
_drainCDCSock(pollFd.fd);
} else {
_drainShardSock(pollFd.fd);
}
}
}
if (_cdcReqs.size() > 0 || _shardResps.size() > 0) {
// process everything in a single batch
_shared.db.update(true, _advanceLogIndex(), _cdcReqs, _shardResps, _step, _cdcReqsTxnIds);
// record txn ids etc. for newly received requests
for (int i = 0; i < _cdcReqs.size(); i++) {
const auto& req = _cdcReqs[i];
const auto& reqInfo = _cdcReqsInfo[i];
CDCTxnId txnId = _cdcReqsTxnIds[i];
ALWAYS_ASSERT(_inFlightTxns.find(txnId) == _inFlightTxns.end());
auto& inFlight = _inFlightTxns[txnId];
inFlight.hasClient = true;
inFlight.cdcRequestId = reqInfo.reqId;
inFlight.clientAddr = reqInfo.clientAddr;
inFlight.kind = req.kind();
inFlight.receivedAt = reqInfo.receivedAt;
inFlight.sock = reqInfo.sock;
_updateInFlightTxns();
_inFlightCDCReqs.insert(InFlightCDCRequestKey(reqInfo.reqId, reqInfo.clientAddr));
}
_processStep();
}
}
virtual void finish() override {
@@ -261,17 +339,34 @@ private:
return true;
}
// To be called when we have a shard response with given `reqId`.
// Searches it in the in flight map, removes it from it, and
// adds a CDCShardResp to `_shardResps`.
// nullptr if we couldn't find the in flight response. Fills in txnId,
// and nothing else.
CDCShardResp* _prepareCDCShardResp(uint64_t reqId) {
// If it's not the request we wanted, skip
auto reqIt = _inFlightShardReqs.find(reqId);
if (reqIt == _inFlightShardReqs.end()) {
LOG_INFO(_env, "got unexpected shard request id %s, dropping", reqId);
return nullptr;
}
CDCTxnId txnId = reqIt->second.txnId;
auto& resp = _shardResps.emplace_back();
resp.txnId = reqIt->second.txnId;
_inFlightShardReqs.erase(reqIt); // not in flight anymore
return &resp;
}
void _initAfterShardsSeen() {
// initialize everything after having seen the shards
// Create sockets. We create one socket for listening to client requests and one for listening
// the the shard's responses. If we have two IPs we do this twice.
_socks.resize((_ipPorts[1].ip == 0) ? 2 : 4);
for (int i = 0; i < _socks.size(); i++) {
if (i > 1 && _ipPorts[1].ip == 0) { // we don't have a second IP
_socks[i] = -1;
continue;
}
int sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
_socks[i] = sock;
_socks[i].fd = sock;
_socks[i].events = POLLIN;
if (sock < 0) {
throw SYSCALL_EXCEPTION("cannot create socket");
}
@@ -305,32 +400,12 @@ private:
LOG_DEBUG(_env, "bound shard %s sock to port %s", i/2, ntohs(addr.sin_port));
}
}
// create epoll structure
// TODO I did this when I had more sockets, we could just use select now that it's 4
// of them...
_epoll = epoll_create1(0);
if (_epoll < 0) {
throw SYSCALL_EXCEPTION("epoll");
}
for (int i = 0; i < _socks.size(); i++) {
if (i > 1 && _ipPorts[1].ip == 0) { // we don't have a second IP
break;
}
auto& event = _events[i];
event.data.u64 = i;
event.events = EPOLLIN | EPOLLET;
if (epoll_ctl(_epoll, EPOLL_CTL_ADD, _socks[i], &event) == -1) {
throw SYSCALL_EXCEPTION("epoll_ctl");
}
}
LOG_INFO(_env, "running on ports %s and %s", _shared.ownPorts[0].load(), _shared.ownPorts[1].load());
// If we've got a dangling transaction, immediately start processing it
_shared.db.startNextTransaction(true, eggsNow(), _advanceLogIndex(), _step, _status);
_updateProcessTimings();
_processStep(_step);
// If we've got dangling transactions, immediately start processing it
_shared.db.bootstrap(true, _advanceLogIndex(), _step);
_processStep();
}
void _drainCDCSock(int sock) {
@@ -381,9 +456,10 @@ private:
EggsError err = NO_ERROR;
// Now, try to parse the body
auto& cdcReq = _cdcReqs.emplace_back();
try {
_cdcReqContainer.unpack(reqBbuf, reqHeader.kind);
LOG_DEBUG(_env, "parsed request: %s", _cdcReqContainer);
cdcReq.unpack(reqBbuf, reqHeader.kind);
LOG_DEBUG(_env, "parsed request: %s", cdcReq);
} catch (const BincodeException& exc) {
LOG_ERROR(_env, "could not parse: %s", exc.what());
RAISE_ALERT(_env, "could not parse CDC request of kind %s from %s, will reply with error.", reqHeader.kind, clientAddr);
@@ -397,24 +473,18 @@ private:
}
if (err == NO_ERROR) {
// If things went well, process the request
LOG_DEBUG(_env, "CDC request %s successfully parsed, will now process", _cdcReqContainer.kind());
uint64_t txnId = _shared.db.processCDCReq(true, eggsNow(), _advanceLogIndex(), _cdcReqContainer, _step, _status);
_updateProcessTimings();
auto& inFlight = _inFlightTxns[txnId];
inFlight.cdcRequestId = reqHeader.requestId;
inFlight.clientAddr = clientAddr;
inFlight.kind = reqHeader.kind;
inFlight.sock = sock;
inFlight.receivedAt = receivedAt;
_updateInFlightTxns();
_inFlightCDCReqs.insert(InFlightCDCRequestKey(reqHeader.requestId, clientAddr));
// Go forward
_processStep(_step);
LOG_DEBUG(_env, "CDC request %s successfully parsed, will process soon", cdcReq.kind());
_cdcReqsInfo.emplace_back(CDCReqInfo{
.reqId = reqHeader.requestId,
.clientAddr = clientAddr,
.receivedAt = receivedAt,
.sock = sock,
});
} else {
// Otherwise we can immediately reply with an error
RAISE_ALERT(_env, "request %s failed before enqueue with error %s", _cdcReqContainer.kind(), err);
// We couldn't parse, reply immediately with an error
RAISE_ALERT(_env, "request %s failed before enqueue with error %s", cdcReq.kind(), err);
_sendError(sock, reqHeader.requestId, err, clientAddr);
_cdcReqs.pop_back(); // let's just forget all about this
}
}
}
@@ -448,100 +518,90 @@ private:
// control all the code in this codebase, and the header is good, and we're a
// bit lazy.
// If it's not the request we wanted, skip
if (!_inFlightShardReq) {
LOG_INFO(_env, "got unexpected shard request id %s, kind %s, from shard, dropping", respHeader.requestId, respHeader.kind);
auto shardResp = _prepareCDCShardResp(respHeader.requestId);
if (shardResp == nullptr) {
// we couldn't find it
continue;
}
if (_inFlightShardReq->shardRequestId != respHeader.requestId) {
LOG_INFO(_env, "got unexpected shard request id %s (expected %s), kind %s, from shard %s, dropping", respHeader.requestId, _inFlightShardReq->shardRequestId, respHeader.kind, _inFlightShardReq->shid);
continue;
}
uint64_t txnId = _inFlightShardReq->txnId;
// We can forget about this, we're going to process it right now
_inFlightShardReq.reset();
// We got an error
if (respHeader.kind == (ShardMessageKind)0) {
EggsError err = reqBbuf.unpackScalar<EggsError>();
_handleShardError(_inFlightShardReq->shid, err);
shardResp->err = reqBbuf.unpackScalar<EggsError>();
LOG_DEBUG(_env, "got error %s for response id %s", shardResp->err, respHeader.requestId);
continue;
}
// Otherwise, parse the body
_shardRespContainer.unpack(reqBbuf, respHeader.kind);
LOG_DEBUG(_env, "parsed shard response: %s", _shardRespContainer);
shardResp->resp.unpack(reqBbuf, respHeader.kind);
LOG_DEBUG(_env, "parsed shard response: %s", shardResp->resp);
ALWAYS_ASSERT(reqBbuf.remaining() == 0);
// If all went well, advance with the newly received request
LOG_DEBUG(_env, "successfully parsed shard response %s with kind %s, will now process", respHeader.requestId, respHeader.kind);
_shared.db.processShardResp(true, eggsNow(), _advanceLogIndex(), NO_ERROR, &_shardRespContainer, _step, _status);
_updateProcessTimings();
_processStep(_step);
LOG_DEBUG(_env, "successfully parsed shard response %s with kind %s, process soon", respHeader.requestId, respHeader.kind);
}
}
void _handleShardError(ShardId shid, EggsError err) {
if (innocuousShardError(err)) {
LOG_DEBUG(_env, "got innocuous shard error %s from shard %s", err, shid);
} else if (rareInnocuousShardError(err)) {
LOG_INFO(_env, "got rare innocuous shard error %s from shard %s", err, shid);
} else {
RAISE_ALERT(_env, "got shard error %s from shard %s", err, shid);
}
_shared.db.processShardResp(true, eggsNow(), _advanceLogIndex(), err, nullptr, _step, _status);
_updateProcessTimings();
_processStep(_step);
}
void _processStep(const CDCStep& step) {
LOG_DEBUG(_env, "processing step %s", step);
if (step.txnFinished != 0) {
LOG_DEBUG(_env, "txn %s finished", step.txnFinished);
void _processStep() {
LOG_DEBUG(_env, "processing step %s", _step);
// finished txns
for (const auto& [txnId, resp]: _step.finishedTxns) {
LOG_DEBUG(_env, "txn %s finished", txnId);
// we need to send the response back to the client
auto inFlight = _inFlightTxns.find(step.txnFinished);
if (inFlight == _inFlightTxns.end()) {
LOG_INFO(_env, "Could not find in-flight request %s, this might be because the CDC was restarted in the middle of a transaction.", step.txnFinished);
} else {
auto inFlight = _inFlightTxns.find(txnId);
if (inFlight->second.hasClient) {
_shared.timingsTotal[(int)inFlight->second.kind].add(eggsNow() - inFlight->second.receivedAt);
_shared.errors[(int)inFlight->second.kind].add(_step.err);
if (step.err != NO_ERROR) {
if (rareInnocuousShardError(step.err)) {
LOG_INFO(_env, "txn %s, req id %s, finished with rare innocuous error %s", step.txnFinished, inFlight->second.cdcRequestId, step.err);
} else if (!innocuousShardError(step.err)) {
RAISE_ALERT(_env, "txn %s, req id %s, finished with error %s", step.txnFinished, inFlight->second.cdcRequestId, step.err);
_shared.errors[(int)inFlight->second.kind].add(resp.err);
if (resp.err != NO_ERROR) {
if (innocuousShardError(resp.err)) {
LOG_INFO(_env, "txn %s, req id %s, finished with innocuous error %s", txnId, inFlight->second.cdcRequestId, resp.err);
} else if (rareInnocuousShardError(resp.err)) {
LOG_INFO(_env, "txn %s, req id %s, finished with rare innocuous error %s", txnId, inFlight->second.cdcRequestId, resp.err);
} else {
RAISE_ALERT(_env, "txn %s, req id %s, finished with error %s", txnId, inFlight->second.cdcRequestId, resp.err);
}
_sendError(inFlight->second.sock, inFlight->second.cdcRequestId, step.err, inFlight->second.clientAddr);
_sendError(inFlight->second.sock, inFlight->second.cdcRequestId, resp.err, inFlight->second.clientAddr);
} else {
LOG_DEBUG(_env, "sending response with req id %s, kind %s, back to %s", inFlight->second.cdcRequestId, inFlight->second.kind, inFlight->second.clientAddr);
BincodeBuf bbuf(&_sendBuf[0], _sendBuf.size());
CDCResponseHeader respHeader(inFlight->second.cdcRequestId, inFlight->second.kind);
respHeader.pack(bbuf);
step.resp.pack(bbuf);
resp.resp.pack(bbuf);
_send(inFlight->second.sock, inFlight->second.clientAddr, (const char*)bbuf.data, bbuf.len());
}
_inFlightCDCReqs.erase(InFlightCDCRequestKey(inFlight->second.cdcRequestId, inFlight->second.clientAddr));
_inFlightTxns.erase(inFlight);
_updateInFlightTxns();
}
_inFlightTxns.erase(inFlight);
_updateInFlightTxns();
}
if (step.txnNeedsShard != 0) {
// in flight txns
for (const auto& [txnId, shardReq]: _step.runningTxns) {
CDCShardReq prevReq;
LOG_TRACE(_env, "txn %s needs shard %s, req %s", step.txnNeedsShard, step.shardReq.shid, step.shardReq.req);
LOG_TRACE(_env, "txn %s needs shard %s, req %s", txnId, shardReq.shid, shardReq.req);
BincodeBuf bbuf(&_sendBuf[0], _sendBuf.size());
// Header
ShardRequestHeader shardReqHeader;
// Do not allocate new req id for repeated requests, so that we'll just accept
// the first one that comes back.
if (!step.shardReq.repeated) {
// the first one that comes back. There's a chance for the txnId to not be here
// yet: if we have just restarted the CDC. In this case we fill it in here, but
// obviously without client addr.
auto inFlightTxn = _inFlightTxns.find(txnId);
if (inFlightTxn == _inFlightTxns.end()) {
LOG_INFO(_env, "Could not find in-flight transaction %s, this might be because the CDC was restarted in the middle of a transaction.", txnId);
InFlightCDCRequest req;
req.hasClient = false;
req.lastSentRequestId = _freshShardReqId();
inFlightTxn = _inFlightTxns.emplace(txnId, req).first;
_updateInFlightTxns();
} else if (shardReq.repeated) {
shardReqHeader.requestId = inFlightTxn->second.lastSentRequestId;
} else {
_shardRequestIdCounter++;
shardReqHeader.requestId = _shardRequestIdCounter;
}
shardReqHeader.requestId = _shardRequestIdCounter;
shardReqHeader.kind = step.shardReq.req.kind();
shardReqHeader.kind = shardReq.req.kind();
shardReqHeader.pack(bbuf);
// Body
step.shardReq.req.pack(bbuf);
shardReq.req.pack(bbuf);
// MAC, if necessary
if (isPrivilegedRequestKind(shardReqHeader.kind)) {
bbuf.packFixedBytes<8>({cbcmac(_expandedCDCKey, bbuf.data, bbuf.len())});
@@ -550,7 +610,7 @@ private:
struct sockaddr_in shardAddr;
memset(&shardAddr, 0, sizeof(shardAddr));
_shared.shardsMutex.lock();
ShardInfo shardInfo = _shared.shards[step.shardReq.shid.u8];
ShardInfo shardInfo = _shared.shards[shardReq.shid.u8];
_shared.shardsMutex.unlock();
auto now = eggsNow(); // randomly pick one of the shard addrs and one of our sockets
int whichShardAddr = now.ns & !!shardInfo.port2;
@@ -559,21 +619,15 @@ private:
shardAddr.sin_port = htons(whichShardAddr ? shardInfo.port2 : shardInfo.port1);
static_assert(sizeof(shardAddr.sin_addr) == sizeof(shardInfo.ip1));
memcpy(&shardAddr.sin_addr, (whichShardAddr ? shardInfo.ip2 : shardInfo.ip1).data.data(), sizeof(shardAddr.sin_addr));
LOG_DEBUG(_env, "sending request with req id %s to shard %s (%s)", shardReqHeader.requestId, step.shardReq.shid, shardAddr);
_send(_socks[whichSock*2 + 1], shardAddr, (const char*)bbuf.data, bbuf.len());
LOG_DEBUG(_env, "sending request for txn %s with req id %s to shard %s (%s)", txnId, shardReqHeader.requestId, shardReq.shid, shardAddr);
_send(_socks[whichSock*2 + 1].fd, shardAddr, (const char*)bbuf.data, bbuf.len());
// Record the in-flight req
ALWAYS_ASSERT(!_inFlightShardReq);
auto& inFlight = _inFlightShardReq.emplace();
inFlight.shardRequestId = shardReqHeader.requestId;
inFlight.sentAt = now;
inFlight.txnId = step.txnNeedsShard;
inFlight.shid = step.shardReq.shid;
}
if (step.nextTxn != 0) {
LOG_DEBUG(_env, "we have txn %s lined up, starting it", step.nextTxn);
_shared.db.startNextTransaction(true, eggsNow(), _advanceLogIndex(), _step, _status);
_updateProcessTimings();
_processStep(_step);
_inFlightShardReqs.insert(shardReqHeader.requestId, InFlightShardRequest{
.txnId = txnId,
.sentAt = now,
.shid = shardReq.shid,
});
inFlightTxn->second.lastSentRequestId = shardReqHeader.requestId;
}
}
@@ -730,11 +784,6 @@ public:
_shared.timingsTotal[(int)kind].toStats(prefix.str(), _stats);
_shared.errors[(int)kind].toStats(prefix.str(), _stats);
}
{
std::ostringstream prefix;
prefix << "cdc." << kind << ".process";
_shared.timingsProcess[(int)kind].toStats(prefix.str(), _stats);
}
}
err = insertStats(_shuckleHost, _shucklePort, 10_sec, _stats);
_stats.clear();
@@ -743,7 +792,6 @@ public:
for (CDCMessageKind kind : allCDCMessageKind) {
_shared.timingsTotal[(int)kind].reset();
_shared.errors[(int)kind].reset();
_shared.timingsProcess[(int)kind].reset();
}
return true;
} else {

View File

@@ -1,11 +1,13 @@
#include <memory>
#include <rocksdb/db.h>
#include <rocksdb/iterator.h>
#include <rocksdb/options.h>
#include <rocksdb/statistics.h>
#include <rocksdb/status.h>
#include <rocksdb/utilities/transaction.h>
#include <rocksdb/utilities/optimistic_transaction_db.h>
#include <fstream>
#include <unordered_set>
#include "Assert.hpp"
#include "Bincode.hpp"
@@ -15,6 +17,7 @@
#include "Env.hpp"
#include "Exception.hpp"
#include "Msgs.hpp"
#include "MsgsGen.hpp"
#include "RocksDBUtils.hpp"
#include "ShardDB.hpp"
#include "Time.hpp"
@@ -92,25 +95,48 @@ std::ostream& operator<<(std::ostream& out, const CDCShardReq& x) {
return out;
}
std::ostream& operator<<(std::ostream& out, const CDCFinished& x) {
out << "CDCFinished(";
if (x.err != NO_ERROR) {
out << "err=" << x.err;
} else {
out << "resp=" << x.resp;
}
out << ")";
return out;
}
std::ostream& operator<<(std::ostream& out, const CDCStep& x) {
ALWAYS_ASSERT(!(x.txnFinished != 0 && x.txnNeedsShard != 0));
out << "CDCStep(";
if (x.txnFinished != 0) {
out << "finishedTxn=" << x.txnFinished;
if (x.err != NO_ERROR) {
out << ", err=" << x.err;
} else {
out << ", resp=" << x.resp;
}
}
if (x.txnNeedsShard != 0) {
out << "txnNeedsShard=" << x.txnNeedsShard << ", shardReq=" << x.shardReq;
}
if (x.nextTxn != 0) {
if (x.txnFinished != 0 || x.txnNeedsShard != 0) {
out << "CDCStep(finishedTxns=[";
for (int i = 0; i < x.finishedTxns.size(); i++) {
if (i > 0) {
out << ", ";
}
out << "nextTxn=" << x.nextTxn;
const auto& txn = x.finishedTxns[i];
out << "<" << txn.first << ", " << txn.second << ">";
}
out << "], runningTxns=[";
for (int i = 0; i < x.runningTxns.size(); i++) {
if (i > 0) {
out << ", ";
}
const auto& txn = x.runningTxns[i];
out << "<" << txn.first << ", " << txn.second << ">";
}
out << "])";
return out;
}
std::ostream& operator<<(std::ostream& out, CDCTxnId id) {
return out << id.x;
}
std::ostream& operator<<(std::ostream& out, const CDCShardResp& x) {
out << "CDCShardResp(txnId=" << x.txnId << ", ";
if (x.err == NO_ERROR) {
out << "resp=" << x.resp;
} else {
out << "err=" << x.err;
}
out << ")";
return out;
@@ -122,26 +148,71 @@ inline bool createCurrentLockedEdgeRetry(EggsError err) {
err == EggsError::MORE_RECENT_SNAPSHOT_EDGE || err == EggsError::MORE_RECENT_CURRENT_EDGE;
}
static constexpr InodeId MOVE_DIRECTORY_LOCK = InodeId::FromU64Unchecked(1ull<<63);
// These are all the directories where we'll lock edges given a request.
// These function _must be pure_! We call it repeatedly as if it's a property
// of the request more than a function.
//
// Technically every well form request will have distinct inode ids, but there
// are parts in the code where this function is called before we know that the
// request is valid.
static std::unordered_set<InodeId> directoriesNeedingLock(const CDCReqContainer& req) {
std::unordered_set<InodeId> toLock;
switch (req.kind()) {
case CDCMessageKind::MAKE_DIRECTORY:
toLock.emplace(req.getMakeDirectory().ownerId);
break;
case CDCMessageKind::RENAME_FILE:
toLock.emplace(req.getRenameFile().oldOwnerId);
toLock.emplace(req.getRenameFile().newOwnerId);
break;
case CDCMessageKind::SOFT_UNLINK_DIRECTORY:
// TODO I'm pretty sure the target id is fine, as
// in, does not need locking.
toLock.emplace(req.getSoftUnlinkDirectory().ownerId);
break;
case CDCMessageKind::RENAME_DIRECTORY:
toLock.emplace(req.getRenameDirectory().oldOwnerId);
toLock.emplace(req.getRenameDirectory().newOwnerId);
// Moving directories is special: it can introduce loops if we're not careful.
// Instead of trying to not create loops in the context of interleaved transactions,
// we instead only allow one move directory at a time.
toLock.emplace(MOVE_DIRECTORY_LOCK);
break;
case CDCMessageKind::HARD_UNLINK_DIRECTORY:
toLock.emplace(req.getHardUnlinkDirectory().dirId);
break;
case CDCMessageKind::CROSS_SHARD_HARD_UNLINK_FILE:
toLock.emplace(req.getCrossShardHardUnlinkFile().ownerId);
break;
case CDCMessageKind::ERROR:
throw EGGS_EXCEPTION("bad req type error");
default:
throw EGGS_EXCEPTION("bad req type %s", (uint8_t)req.kind());
}
return toLock;
}
struct StateMachineEnv {
Env& env;
rocksdb::OptimisticTransactionDB* db;
rocksdb::ColumnFamilyHandle* defaultCf;
rocksdb::ColumnFamilyHandle* parentCf;
rocksdb::Transaction& dbTxn;
EggsTime time;
uint64_t txnId;
CDCTxnId txnId;
uint8_t txnStep;
CDCStep& cdcStep;
bool finished;
StateMachineEnv(
Env& env_, rocksdb::OptimisticTransactionDB* db_, rocksdb::ColumnFamilyHandle* defaultCf_, rocksdb::ColumnFamilyHandle* parentCf_, rocksdb::Transaction& dbTxn_, EggsTime time_, uint64_t txnId_, uint8_t step_, CDCStep& cdcStep_
Env& env_, rocksdb::ColumnFamilyHandle* defaultCf_, rocksdb::ColumnFamilyHandle* parentCf_, rocksdb::Transaction& dbTxn_, CDCTxnId txnId_, uint8_t step_, CDCStep& cdcStep_
):
env(env_), db(db_), defaultCf(defaultCf_), parentCf(parentCf_), dbTxn(dbTxn_), time(time_), txnId(txnId_), txnStep(step_), cdcStep(cdcStep_)
env(env_), defaultCf(defaultCf_), parentCf(parentCf_), dbTxn(dbTxn_), txnId(txnId_), txnStep(step_), cdcStep(cdcStep_), finished(false)
{}
InodeId nextDirectoryId() {
InodeId nextDirectoryId(rocksdb::Transaction& dbTxn) {
std::string v;
ROCKS_DB_CHECKED(db->Get({}, defaultCf, cdcMetadataKey(&NEXT_DIRECTORY_ID_KEY), &v));
ROCKS_DB_CHECKED(dbTxn.Get({}, defaultCf, cdcMetadataKey(&NEXT_DIRECTORY_ID_KEY), &v));
ExternalValue<InodeIdValue> nextId(v);
InodeId id = nextId().id();
nextId().setId(InodeId::FromU64(id.u64 + 1));
@@ -151,24 +222,27 @@ struct StateMachineEnv {
ShardReqContainer& needsShard(uint8_t step, ShardId shid, bool repeated) {
txnStep = step;
cdcStep.txnFinished = 0;
cdcStep.txnNeedsShard = txnId;
cdcStep.shardReq.shid = shid;
cdcStep.shardReq.repeated = repeated;
return cdcStep.shardReq.req;
auto& running = cdcStep.runningTxns.emplace_back();
running.first = txnId;
running.second.shid = shid;
running.second.repeated = repeated;
return running.second.req;
}
CDCRespContainer& finish() {
cdcStep.txnFinished = txnId;
cdcStep.err = NO_ERROR;
return cdcStep.resp;
this->finished = true;
auto& finished = cdcStep.finishedTxns.emplace_back();
finished.first = txnId;
finished.second.err = NO_ERROR;
return finished.second.resp;
}
void finishWithError(EggsError err) {
this->finished = true;
ALWAYS_ASSERT(err != NO_ERROR);
cdcStep.txnFinished = txnId;
cdcStep.err = err;
cdcStep.txnNeedsShard = 0;
auto& errored = cdcStep.finishedTxns.emplace_back();
errored.first = txnId;
errored.second.err = err;
}
};
@@ -234,7 +308,7 @@ struct MakeDirectoryStateMachine {
}
void start() {
state.setDirId(env.nextDirectoryId());
state.setDirId(env.nextDirectoryId(env.dbTxn));
lookup();
}
@@ -1217,23 +1291,33 @@ struct UnpackCDCReq {
struct CDCDBImpl {
Env _env;
// TODO it would be good to store basically all of the metadata in memory,
// so that we'd just read from it, but this requires a bit of care when writing
// if we want to be able to not write the batch at the end.
// The reason why we insist in storing everything in RocksDB is that we can do
// everything in a single transaction, so it's easier to reason about atomic
// modifications. _dirsToTxnsCf for example would be much simpler as a
// simple unordered_map.
//
// It also has the nice advantage that we don't need to reconstruct the state
// when starting up, it's all already there.
rocksdb::OptimisticTransactionDB* _db;
rocksdb::ColumnFamilyHandle* _defaultCf;
rocksdb::ColumnFamilyHandle* _reqQueueCf;
rocksdb::ColumnFamilyHandle* _parentCf;
rocksdb::ColumnFamilyHandle* _enqueuedCf; // V1, txnId -> CDC req, only for executing or waiting to be executed requests
rocksdb::ColumnFamilyHandle* _executingCf; // V1, txnId -> CDC state machine, for requests that are executing
// V1, data structure storing a dir to txn ids mapping:
// InodeId -> txnId -- sentinel telling us what the first txn in line is. If none, zero.
// we need the sentinel to skip over tombstones quickly.
// InodeId, txnId set with the queue
rocksdb::ColumnFamilyHandle* _dirsToTxnsCf;
// rocksdb::ColumnFamilyHandle* _dirsToTxnsCf; // V1, InodeId, txnId set
// legacy
rocksdb::ColumnFamilyHandle* _reqQueueCfLegacy; // V0, txnId -> CDC req, for all the requests (including historical)
AssertiveLock _processLock;
std::shared_ptr<rocksdb::Statistics> _dbStatistics;
std::string _dbStatisticsFile;
// Used to deserialize into
CDCReqContainer _cdcReq;
// ----------------------------------------------------------------
// initialization
@@ -1256,6 +1340,9 @@ struct CDCDBImpl {
{rocksdb::kDefaultColumnFamilyName, {}},
{"reqQueue", {}},
{"parent", {}},
{"enqueued", {}},
{"executing", {}},
{"dirsToTxns", {}},
};
std::vector<rocksdb::ColumnFamilyHandle*> familiesHandles;
auto dbPath = path + "/db";
@@ -1266,8 +1353,11 @@ struct CDCDBImpl {
);
ALWAYS_ASSERT(familiesDescriptors.size() == familiesHandles.size());
_defaultCf = familiesHandles[0];
_reqQueueCf = familiesHandles[1];
_reqQueueCfLegacy = familiesHandles[1];
_parentCf = familiesHandles[2];
_enqueuedCf = familiesHandles[3];
_executingCf = familiesHandles[4];
_dirsToTxnsCf = familiesHandles[5];
_initDb();
}
@@ -1276,8 +1366,11 @@ struct CDCDBImpl {
LOG_INFO(_env, "destroying column families and closing database");
ROCKS_DB_CHECKED(_db->DestroyColumnFamilyHandle(_defaultCf));
ROCKS_DB_CHECKED(_db->DestroyColumnFamilyHandle(_reqQueueCf));
ROCKS_DB_CHECKED(_db->DestroyColumnFamilyHandle(_reqQueueCfLegacy));
ROCKS_DB_CHECKED(_db->DestroyColumnFamilyHandle(_parentCf));
ROCKS_DB_CHECKED(_db->DestroyColumnFamilyHandle(_enqueuedCf));
ROCKS_DB_CHECKED(_db->DestroyColumnFamilyHandle(_executingCf));
ROCKS_DB_CHECKED(_db->DestroyColumnFamilyHandle(_dirsToTxnsCf));
ROCKS_DB_CHECKED(_db->Close());
}
@@ -1301,16 +1394,33 @@ struct CDCDBImpl {
}
TXN_ID_SETTER_GETTER(LAST_TXN_KEY, _lastTxn, _setLastTxn)
TXN_ID_SETTER_GETTER(FIRST_TXN_IN_QUEUE_KEY, _firstTxnInQueue, _setFirstTxnInQueue)
TXN_ID_SETTER_GETTER(LAST_TXN_IN_QUEUE_KEY, _lastTxnInQueue, _setLastTxnInQueue)
TXN_ID_SETTER_GETTER(EXECUTING_TXN_KEY, _executingTxn, _setExecutingTxn)
TXN_ID_SETTER_GETTER(EXECUTING_TXN_KEY, _executingTxnLegacy, _setExecutingTxnLegacy)
#undef TXN_ID_SETTER_GETTER
void _initDb() {
const auto keyExists = [this](rocksdb::ColumnFamilyHandle* cf, const rocksdb::Slice& key) -> bool {
// returns -1 if the version key was not set
int64_t _version(rocksdb::Transaction& dbTxn) {
std::string value;
auto status = dbTxn.Get({}, _defaultCf, cdcMetadataKey(&VERSION_KEY), &value);
if (status.IsNotFound()) {
return -1;
} else {
ROCKS_DB_CHECKED(status);
ExternalValue<U64Value> vV(value);
return vV().u64();
}
}
void _setVersion(rocksdb::Transaction& dbTxn, uint64_t version) {
auto v = U64Value::Static(version);
ROCKS_DB_CHECKED(dbTxn.Put({}, cdcMetadataKey(&VERSION_KEY), v.toSlice()));
}
void _initDbV0(rocksdb::Transaction& dbTxn) {
LOG_INFO(_env, "initializing V0 db");
const auto keyExists = [&dbTxn](rocksdb::ColumnFamilyHandle* cf, const rocksdb::Slice& key) -> bool {
std::string value;
auto status = _db->Get({}, cf, key, &value);
auto status = dbTxn.Get({}, cf, key, &value);
if (status.IsNotFound()) {
return false;
} else {
@@ -1322,15 +1432,15 @@ struct CDCDBImpl {
if (!keyExists(_defaultCf, cdcMetadataKey(&NEXT_DIRECTORY_ID_KEY))) {
LOG_INFO(_env, "initializing next directory id");
auto id = InodeIdValue::Static(InodeId::FromU64(ROOT_DIR_INODE_ID.u64 + 1));
ROCKS_DB_CHECKED(_db->Put({}, cdcMetadataKey(&NEXT_DIRECTORY_ID_KEY), id.toSlice()));
ROCKS_DB_CHECKED(dbTxn.Put({}, cdcMetadataKey(&NEXT_DIRECTORY_ID_KEY), id.toSlice()));
}
const auto initZeroValue = [this, &keyExists](const std::string& what, const CDCMetadataKey& key) {
const auto initZeroValue = [this, &keyExists, &dbTxn](const std::string& what, const CDCMetadataKey& key) {
if (!keyExists(_defaultCf, cdcMetadataKey(&key))) {
LOG_INFO(_env, "initializing %s", what);
StaticValue<U64Value> v;
v().setU64(0);
ROCKS_DB_CHECKED(_db->Put({}, cdcMetadataKey(&key), v.toSlice()));
ROCKS_DB_CHECKED(dbTxn.Put({}, cdcMetadataKey(&key), v.toSlice()));
}
};
@@ -1341,6 +1451,61 @@ struct CDCDBImpl {
initZeroValue("last applied log index", LAST_APPLIED_LOG_ENTRY_KEY);
}
void _initDbV1(rocksdb::Transaction& dbTxn) {
LOG_INFO(_env, "initializing V1 db");
// Pick up the executing txn, if any, and move it to the executing CF.
// We preserve the executing txn to preserve integrity.
{
uint64_t executingTxn = _executingTxnLegacy(dbTxn);
if (executingTxn != 0) {
LOG_INFO(_env, "migrating txn %s", executingTxn);
// _reqQueueCf -> _enqueuedCf
auto txnK = CDCTxnIdKey::Static(CDCTxnId(executingTxn));
std::string reqV;
ROCKS_DB_CHECKED(dbTxn.Get({}, _reqQueueCfLegacy, txnK.toSlice(), &reqV));
CDCReqContainer req;
UnpackCDCReq ureq(req);
bincodeFromRocksValue(reqV, ureq);
ROCKS_DB_CHECKED(dbTxn.Put(_enqueuedCf, txnK.toSlice(), reqV));
// EXECUTING_TXN_KEY -> _executingCf
std::string txnStateV;
ROCKS_DB_CHECKED(dbTxn.Get({}, _defaultCf, cdcMetadataKey(&EXECUTING_TXN_STATE_KEY), &txnStateV));
ROCKS_DB_CHECKED(dbTxn.Put(_executingCf, txnK.toSlice(), txnStateV));
// Add to _dirsToTxnsCf, will lock since things are empty
_addToDirsToTxns(dbTxn, txnK().id(), req);
}
}
// Throw away everything legacy. The clients will just retry.
ROCKS_DB_CHECKED(dbTxn.Delete(cdcMetadataKey(&FIRST_TXN_IN_QUEUE_KEY)));
ROCKS_DB_CHECKED(dbTxn.Delete(cdcMetadataKey(&LAST_TXN_IN_QUEUE_KEY)));
ROCKS_DB_CHECKED(dbTxn.Delete(cdcMetadataKey(&EXECUTING_TXN_KEY)));
ROCKS_DB_CHECKED(dbTxn.Delete(cdcMetadataKey(&EXECUTING_TXN_STATE_KEY)));
// We could delete the CF itself, but let's do everything in the same transaction
std::unique_ptr<rocksdb::Iterator> it(dbTxn.GetIterator({}, _reqQueueCfLegacy));
for (it->Seek(""); it->Valid(); it->Next()) {
ROCKS_DB_CHECKED(dbTxn.Delete(_reqQueueCfLegacy, it->key()));
}
ROCKS_DB_CHECKED(it->status());
}
void _initDb() {
rocksdb::WriteOptions options;
options.sync = true;
std::unique_ptr<rocksdb::Transaction> dbTxn(_db->BeginTransaction(options));
if (_version(*dbTxn), -1) {
_initDbV0(*dbTxn);
_setVersion(*dbTxn, 0);
}
if (_version(*dbTxn) == 0) {
_initDbV1(*dbTxn);
_setVersion(*dbTxn, 1);
}
commitTransaction(*dbTxn);
}
// ----------------------------------------------------------------
// retrying txns
@@ -1375,15 +1540,22 @@ struct CDCDBImpl {
// Processing
// ----------------------------------------------------------------
uint64_t _lastAppliedLogEntry() {
uint64_t _lastAppliedLogEntryDB() {
std::string value;
ROCKS_DB_CHECKED(_db->Get({}, cdcMetadataKey(&LAST_APPLIED_LOG_ENTRY_KEY), &value));
ExternalValue<U64Value> v(value);
return v().u64();
}
uint64_t _lastAppliedLogEntry(rocksdb::Transaction& dbTxn) {
std::string value;
ROCKS_DB_CHECKED(dbTxn.Get({}, cdcMetadataKey(&LAST_APPLIED_LOG_ENTRY_KEY), &value));
ExternalValue<U64Value> v(value);
return v().u64();
}
void _advanceLastAppliedLogEntry(rocksdb::Transaction& dbTxn, uint64_t index) {
uint64_t oldIndex = _lastAppliedLogEntry();
uint64_t oldIndex = _lastAppliedLogEntry(dbTxn);
ALWAYS_ASSERT(oldIndex+1 == index, "old index is %s, expected %s, got %s", oldIndex, oldIndex+1, index);
LOG_DEBUG(_env, "bumping log index from %s to %s", oldIndex, index);
StaticValue<U64Value> v;
@@ -1391,80 +1563,131 @@ struct CDCDBImpl {
ROCKS_DB_CHECKED(dbTxn.Put({}, cdcMetadataKey(&LAST_APPLIED_LOG_ENTRY_KEY), v.toSlice()));
}
// Pushes a new request onto the queue.
void _reqQueuePush(rocksdb::Transaction& dbTxn, uint64_t txnId, const CDCReqContainer& req) {
// Check metadata
uint64_t last = _lastTxnInQueue(dbTxn);
ALWAYS_ASSERT(last == 0 || txnId == last + 1);
// Write to queue
{
auto k = U64Key::Static(txnId);
std::string v = bincodeToRocksValue(PackCDCReq(req));
ROCKS_DB_CHECKED(dbTxn.Put(_reqQueueCf, k.toSlice(), v));
void _addToDirsToTxns(rocksdb::Transaction& dbTxn, CDCTxnId txnId, const CDCReqContainer& req) {
for (const auto dirId: directoriesNeedingLock(req)) {
LOG_DEBUG(_env, "adding dir %s for txn %s", dirId, txnId);
{
// into the set
StaticValue<DirsToTxnsKey> k;
k().setDirId(dirId);
k().setTxnId(txnId);
ROCKS_DB_CHECKED(dbTxn.Put(_dirsToTxnsCf, k.toSlice(), ""));
}
{
// sentinel, if necessary
StaticValue<DirsToTxnsKey> k;
k().setDirId(dirId);
k().setSentinel();
std::string v;
auto status = dbTxn.Get({}, _dirsToTxnsCf, k.toSlice(), &v);
if (status.IsNotFound()) { // we're the first ones here, add the sentinel
auto v = CDCTxnIdValue::Static(txnId);
ROCKS_DB_CHECKED(dbTxn.Put(_dirsToTxnsCf, k.toSlice(), v.toSlice()));
} else {
ROCKS_DB_CHECKED(status);
}
}
}
// Update metadata
if (last == 0) {
_setFirstTxnInQueue(dbTxn, txnId);
}
_setLastTxnInQueue(dbTxn, txnId);
}
// Returns 0 if the queue was empty, otherwise what was popped
uint64_t _reqQueuePeek(rocksdb::Transaction& dbTxn, CDCReqContainer& req) {
uint64_t first = _firstTxnInQueue(dbTxn);
if (first == 0) {
return 0;
// Returns the txn ids that might be free to work now. Note that we don't
// know that for sure because they might not hold locks for all dirs. This
// function does not check that.
void _removeFromDirsToTxns(rocksdb::Transaction& dbTxn, CDCTxnId txnId, const CDCReqContainer& req, std::vector<CDCTxnId>& mightBeReady) {
for (const auto dirId: directoriesNeedingLock(req)) {
LOG_DEBUG(_env, "removing dir %s for txn %s", dirId, txnId);
StaticValue<DirsToTxnsKey> k;
k().setDirId(dirId);
k().setTxnId(txnId);
// Check if there's a next key in line. We know that we won't
// have to step over many deleted keys here because we go through the
// list in order, and we seek from the list element we've just deleted.
// It is however important to set the iteration upper bound as of to
// not spill over and possibly trip over deleted keys.
StaticValue<DirsToTxnsKey> upperBoundK;
upperBoundK().setDirId(dirId);
upperBoundK().setTxnId(CDCTxnId(~(uint64_t)0));
rocksdb::Slice upperBoundSlice = upperBoundK.toSlice();
rocksdb::ReadOptions itOptions;
itOptions.iterate_upper_bound = &upperBoundSlice;
std::unique_ptr<rocksdb::Iterator> it(dbTxn.GetIterator(itOptions, _dirsToTxnsCf));
it->Seek(k.toSlice());
// we must find the key here -- we're removing it.
ALWAYS_ASSERT(it->Valid());
{
// Additional safety check: the key is what we expect.
auto foundKey = ExternalValue<DirsToTxnsKey>::FromSlice(it->key());
ALWAYS_ASSERT(!foundKey().isSentinel() && foundKey().txnId() == txnId);
}
// now that we've done our checks, we can remove the key
ROCKS_DB_CHECKED(dbTxn.Delete(_dirsToTxnsCf, k.toSlice()));
// then we look for the next one, if there's anything,
// and overwrite/delete the sentinel
StaticValue<DirsToTxnsKey> sentinelK;
sentinelK().setDirId(dirId);
sentinelK().setSentinel();
it->Next();
if (it->Valid()) { // there's something, set the sentinel
auto nextK = ExternalValue<DirsToTxnsKey>::FromSlice(it->key());
auto sentinelV = CDCTxnIdValue::Static(nextK().txnId());
LOG_DEBUG(_env, "selected %s as next in line after finishing %s", nextK().txnId(), txnId);
mightBeReady.emplace_back(nextK().txnId());
ROCKS_DB_CHECKED(dbTxn.Put(_dirsToTxnsCf, sentinelK.toSlice(), sentinelV.toSlice()));
} else { // we were the last ones here, remove sentinel
ROCKS_DB_CHECKED(it->status());
ROCKS_DB_CHECKED(dbTxn.Delete(_dirsToTxnsCf, sentinelK.toSlice()));
}
}
// Read
{
auto k = U64Key::Static(first);
}
// Check if we have a lock on all the directories that matter to the txn id.
// It is assumed that the txnId in question is already in _dirsToTxnsCf.
bool _isReadyToGo(rocksdb::Transaction& dbTxn, CDCTxnId txnId, const CDCReqContainer& req) {
for (const auto dirId: directoriesNeedingLock(req)) {
// the sentinel _must_ be present -- at the very least us!
StaticValue<DirsToTxnsKey> k;
k().setDirId(dirId);
k().setSentinel();
std::string v;
ROCKS_DB_CHECKED(dbTxn.Get({}, _reqQueueCf, k.toSlice(), &v));
UnpackCDCReq ureq(req);
bincodeFromRocksValue(v, ureq);
ROCKS_DB_CHECKED(dbTxn.Get({}, _dirsToTxnsCf, k.toSlice(), &v));
ExternalValue<CDCTxnIdValue> otherTxnId(v);
if (otherTxnId().id() != txnId) {
return false;
}
}
return first;
return true;
}
// Returns 0 if the queue was empty, otherwise what was popped
uint64_t _reqQueuePop(rocksdb::Transaction& dbTxn) {
uint64_t first = _firstTxnInQueue(dbTxn);
if (first == 0) {
LOG_DEBUG(_env, "txn queue empty, returning 0");
return 0;
// Adds a request to the enqueued requests. Also adds it to dirsToTxns, which will implicitly
// acquire locks.
void _addToEnqueued(rocksdb::Transaction& dbTxn, CDCTxnId txnId, const CDCReqContainer& req) {
{
auto k = CDCTxnIdKey::Static(txnId);
std::string v = bincodeToRocksValue(PackCDCReq(req));
ROCKS_DB_CHECKED(dbTxn.Put(_enqueuedCf, k.toSlice(), v));
}
// Update metadata
uint64_t last = _lastTxnInQueue(dbTxn);
if (first == last) { // empty queue
_setFirstTxnInQueue(dbTxn, 0);
_setLastTxnInQueue(dbTxn, 0);
} else {
_setFirstTxnInQueue(dbTxn, first+1);
}
LOG_DEBUG(_env, "popped txn %s from queue", first);
return first;
_addToDirsToTxns(dbTxn, txnId, req);
}
// Moves the state forward, filling in `step` appropriatedly, and writing
// out the updated state.
//
// This will _not_ start a new transaction automatically if the old one
// finishes. It does return whether the txn was finished though.
template<template<typename> typename V>
bool _advance(
EggsTime time,
void _advance(
rocksdb::Transaction& dbTxn,
uint64_t txnId,
CDCTxnId txnId,
const CDCReqContainer& req,
// If `shardRespError` and `shardResp` are null, we're starting to execute.
// Otherwise, (err == NO_ERROR) == (req != nullptr).
EggsError shardRespError,
const ShardRespContainer* shardResp,
V<TxnState>& state,
CDCStep& step
CDCStep& step,
// to collect things that might be able to start now because
// we've finished doing other stuff
std::vector<CDCTxnId>& txnIds
) {
LOG_DEBUG(_env, "advancing txn %s of kind %s", txnId, req.kind());
StateMachineEnv sm(_env, _db, _defaultCf, _parentCf, dbTxn, time, txnId, state().step(), step);
LOG_DEBUG(_env, "advancing txn %s of kind %s with state", txnId, req.kind());
StateMachineEnv sm(_env, _defaultCf, _parentCf, dbTxn, txnId, state().step(), step);
switch (req.kind()) {
case CDCMessageKind::MAKE_DIRECTORY:
MakeDirectoryStateMachine(sm, req.getMakeDirectory(), state().getMakeDirectory()).resume(shardRespError, shardResp);
@@ -1489,155 +1712,162 @@ struct CDCDBImpl {
}
state().setStep(sm.txnStep);
ALWAYS_ASSERT(step.txnFinished == 0 || step.txnFinished == txnId);
ALWAYS_ASSERT(step.txnNeedsShard == 0 || step.txnNeedsShard == txnId);
ALWAYS_ASSERT(step.txnFinished == txnId || step.txnNeedsShard == txnId);
if (step.txnFinished == txnId) {
// we're done, clear the transaction from the system
ALWAYS_ASSERT(_reqQueuePop(dbTxn) == txnId);
_setExecutingTxn(dbTxn, 0);
// not strictly necessary, it'll just be overwritten next time, but let's be tidy
ROCKS_DB_CHECKED(dbTxn.Delete(_defaultCf, cdcMetadataKey(&EXECUTING_TXN_STATE_KEY)));
// also, fill in whether we've got something next
step.nextTxn = _firstTxnInQueue(dbTxn);
return true;
if (sm.finished) {
// we finished immediately
LOG_DEBUG(_env, "txn %s with req %s finished", txnId, req);
_finishExecuting(dbTxn, txnId, req, txnIds);
} else {
// we're _not_ done, write out the state
ROCKS_DB_CHECKED(dbTxn.Put(_defaultCf, cdcMetadataKey(&EXECUTING_TXN_STATE_KEY), state.toSlice()));
// we still have something to do, persist
_setExecuting(dbTxn, txnId, state);
}
}
bool _isExecuting(rocksdb::Transaction& dbTxn, CDCTxnId txnId) {
auto k = CDCTxnIdKey::Static(txnId);
std::string v;
auto status = dbTxn.Get({}, _executingCf, k.toSlice(), &v);
if (status.IsNotFound()) {
return false;
}
ROCKS_DB_CHECKED(status);
return true;
}
// Starts executing the next transaction in line, if possible. If it managed
// to start something, it immediately advances it as well (no point delaying
// that). Returns the txn id that was started, if any.
uint64_t _startExecuting(EggsTime time, rocksdb::Transaction& dbTxn, CDCStep& step, CDCStatus& status) {
uint64_t executingTxn = _executingTxn(dbTxn);
if (executingTxn != 0) {
LOG_DEBUG(_env, "another transaction %s is already executing, can't start", executingTxn);
return 0;
}
uint64_t txnToExecute = _reqQueuePeek(dbTxn, _cdcReq);
if (txnToExecute == 0) {
LOG_DEBUG(_env, "no transactions in queue found, can't start");
return 0;
}
_setExecutingTxn(dbTxn, txnToExecute);
LOG_DEBUG(_env, "starting to execute txn %s with req %s", txnToExecute, _cdcReq);
StaticValue<TxnState> txnState;
txnState().start(_cdcReq.kind());
bool stillRunning = _advance(time, dbTxn, txnToExecute, _cdcReq, NO_ERROR, nullptr, txnState, step);
if (stillRunning) {
status.runningTxn = txnToExecute;
status.runningTxnKind = _cdcReq.kind();
}
return txnToExecute;
template<template<typename> typename V>
void _setExecuting(rocksdb::Transaction& dbTxn, CDCTxnId txnId, V<TxnState>& state) {
auto k = CDCTxnIdKey::Static(txnId);
ROCKS_DB_CHECKED(dbTxn.Put(_executingCf, k.toSlice(), state.toSlice()));
}
uint64_t processCDCReq(
bool sync,
EggsTime time,
uint64_t logIndex,
const CDCReqContainer& req,
CDCStep& step,
CDCStatus& status
) {
status.reset();
auto locked = _processLock.lock();
rocksdb::WriteOptions options;
options.sync = sync;
std::unique_ptr<rocksdb::Transaction> dbTxn(_db->BeginTransaction(options));
step.clear();
_advanceLastAppliedLogEntry(*dbTxn, logIndex);
// Enqueue req
uint64_t txnId;
void _finishExecuting(rocksdb::Transaction& dbTxn, CDCTxnId txnId, const CDCReqContainer& req, std::vector<CDCTxnId>& txnIds) {
{
// Generate new txn id
txnId = _lastTxn(*dbTxn) + 1;
_setLastTxn(*dbTxn, txnId);
// Push to queue
_reqQueuePush(*dbTxn, txnId, req);
LOG_DEBUG(_env, "enqueued CDC req %s with txn id %s", req.kind(), txnId);
// delete from _executingCf
auto k = CDCTxnIdKey::Static(txnId);
ROCKS_DB_CHECKED(dbTxn.Delete(_executingCf, k.toSlice()));
}
// Start executing, if we can
_startExecuting(time, *dbTxn, step, status);
LOG_DEBUG(_env, "committing transaction");
commitTransaction(*dbTxn);
return txnId;
// delete from dirsToTxnIds
_removeFromDirsToTxns(dbTxn, txnId, req, txnIds);
}
void processShardResp(
bool sync, // Whether to persist synchronously. Unneeded if log entries are persisted already.
EggsTime time,
uint64_t logIndex,
EggsError respError,
// Starts executing the given transactions, if possible. If it managed
// to start something, it immediately advances it as well (no point delaying
// that).
//
// It modifies `txnIds` with new transactions we looked at if we immediately
// finish executing txns that we start here.
void _startExecuting(rocksdb::Transaction& dbTxn, std::vector<CDCTxnId>& txnIds, CDCStep& step) {
CDCReqContainer req;
for (int i = 0; i < txnIds.size(); i++) {
CDCTxnId txnId = txnIds[i];
auto reqK = CDCTxnIdKey::Static(txnId);
std::string reqV;
ROCKS_DB_CHECKED(dbTxn.Get({}, _enqueuedCf, reqK.toSlice(), &reqV));
UnpackCDCReq ureq(req);
bincodeFromRocksValue(reqV, ureq);
if (!_isExecuting(dbTxn, txnId)) {
if (_isReadyToGo(dbTxn, txnId, req)) {
LOG_DEBUG(_env, "starting to execute txn %s with req %s, since it is ready to go and not executing already", txnId, req);
StaticValue<TxnState> txnState;
txnState().start(req.kind());
_setExecuting(dbTxn, txnId, txnState);
_advance(dbTxn, txnId, req, NO_ERROR, nullptr, txnState, step, txnIds);
} else {
LOG_DEBUG(_env, "waiting before executing txn %s with req %s, since it is not ready to go", txnId, req);
}
}
}
}
void _enqueueCDCReqs(
rocksdb::Transaction& dbTxn,
const std::vector<CDCReqContainer>& reqs,
CDCStep& step,
// we need two lists because one (`cdcReqsTxnIds`) is specifically
// to return to the user, while the other is used for other purposes,
// too.
std::vector<CDCTxnId>& txnIdsToStart,
std::vector<CDCTxnId>& cdcReqsTxnIds
) {
for (const auto& req: reqs) {
uint64_t txnId;
{
// Generate new txn id
txnId = _lastTxn(dbTxn) + 1;
_setLastTxn(dbTxn, txnId);
// Push to queue
_addToEnqueued(dbTxn, txnId, req);
LOG_DEBUG(_env, "enqueued CDC req %s with txn id %s", req.kind(), txnId);
}
txnIdsToStart.emplace_back(txnId);
cdcReqsTxnIds.emplace_back(txnId);
}
}
void _advanceWithResp(
rocksdb::Transaction& dbTxn,
CDCTxnId txnId,
EggsError err,
const ShardRespContainer* resp,
CDCStep& step,
CDCStatus& status
std::vector<CDCTxnId>& txnIdsToStart
) {
status.reset();
auto locked = _processLock.lock();
rocksdb::WriteOptions options;
options.sync = sync;
std::unique_ptr<rocksdb::Transaction> dbTxn(_db->BeginTransaction(options));
step.clear();
_advanceLastAppliedLogEntry(*dbTxn, logIndex);
// Find the txn
uint64_t txnId = _executingTxn(*dbTxn);
ALWAYS_ASSERT(txnId != 0);
auto txnIdK = CDCTxnIdKey::Static(txnId);
// Get the req
CDCReqContainer cdcReq;
{
auto k = U64Key::Static(txnId);
std::string reqV;
ROCKS_DB_CHECKED(dbTxn->Get({}, _reqQueueCf, k.toSlice(), &reqV));
UnpackCDCReq ureq(_cdcReq);
ROCKS_DB_CHECKED(dbTxn.Get({}, _enqueuedCf, txnIdK.toSlice(), &reqV));
UnpackCDCReq ureq(cdcReq);
bincodeFromRocksValue(reqV, ureq);
}
// Get the state
std::string txnStateV;
ROCKS_DB_CHECKED(dbTxn->Get({}, _defaultCf, cdcMetadataKey(&EXECUTING_TXN_STATE_KEY), &txnStateV));
ROCKS_DB_CHECKED(dbTxn.Get({}, _executingCf, txnIdK.toSlice(), &txnStateV));
ExternalValue<TxnState> txnState(txnStateV);
// Advance
bool stillRunning = _advance(time, *dbTxn, txnId, _cdcReq, respError, resp, txnState, step);
// Advance with response
_advance(dbTxn, txnId, cdcReq, err, resp, txnState, step, txnIdsToStart);
}
if (stillRunning) {
// Store status
status.runningTxn = txnId;
status.runningTxnKind = _cdcReq.kind();
void update(
bool sync,
uint64_t logIndex,
const std::vector<CDCReqContainer>& cdcReqs,
const std::vector<CDCShardResp>& shardResps,
CDCStep& step,
std::vector<CDCTxnId>& cdcReqsTxnIds
) {
auto locked = _processLock.lock();
rocksdb::WriteOptions options;
options.sync = sync;
std::unique_ptr<rocksdb::Transaction> dbTxn(_db->BeginTransaction(options));
_advanceLastAppliedLogEntry(*dbTxn, logIndex);
step.clear();
cdcReqsTxnIds.clear();
{
std::vector<CDCTxnId> txnIdsToStart;
_enqueueCDCReqs(*dbTxn, cdcReqs, step, txnIdsToStart, cdcReqsTxnIds);
for (const auto& resp: shardResps) {
_advanceWithResp(*dbTxn, resp.txnId, resp.err, &resp.resp, step, txnIdsToStart);
}
_startExecuting(*dbTxn, txnIdsToStart, step);
}
commitTransaction(*dbTxn);
}
void startNextTransaction(
bool sync, // Whether to persist synchronously. Unneeded if log entries are persisted already.
EggsTime time,
void bootstrap(
bool sync,
uint64_t logIndex,
CDCStep& step,
CDCStatus& status
CDCStep& step
) {
status.reset();
auto locked = _processLock.lock();
rocksdb::WriteOptions options;
@@ -1647,31 +1877,17 @@ struct CDCDBImpl {
step.clear();
_advanceLastAppliedLogEntry(*dbTxn, logIndex);
uint64_t txnId = _startExecuting(time, *dbTxn, step, status);
if (txnId == 0) {
// no txn could be started, see if one is executing already to fill in the `step`
txnId = _executingTxn(*dbTxn);
if (txnId != 0) {
LOG_DEBUG(_env, "transaction %s is already executing, will resume it", txnId);
// Get the req
{
auto k = U64Key::Static(txnId);
std::string reqV;
ROCKS_DB_CHECKED(dbTxn->Get({}, _reqQueueCf, k.toSlice(), &reqV));
UnpackCDCReq ureq(_cdcReq);
bincodeFromRocksValue(reqV, ureq);
}
// Store status
status.runningTxn = txnId;
status.runningTxnKind = _cdcReq.kind();
// Get the state
std::string txnStateV;
ROCKS_DB_CHECKED(dbTxn->Get({}, _defaultCf, cdcMetadataKey(&EXECUTING_TXN_STATE_KEY), &txnStateV));
ExternalValue<TxnState> txnState(txnStateV);
// Advance
_advance(time, *dbTxn, txnId, _cdcReq, NO_ERROR, nullptr, txnState, step);
}
std::vector<CDCTxnId> txnIdsToStart;
// Just collect all executing txns, and run them
std::unique_ptr<rocksdb::Iterator> it(dbTxn->GetIterator({}, _executingCf));
for (it->Seek(""); it->Valid(); it->Next()) {
auto txnIdK = ExternalValue<CDCTxnIdKey>::FromSlice(it->key());
_advanceWithResp(*dbTxn, txnIdK().id(), NO_ERROR, nullptr, step, txnIdsToStart);
}
ROCKS_DB_CHECKED(it->status());
_startExecuting(*dbTxn, txnIdsToStart, step);
commitTransaction(*dbTxn);
}
@@ -1699,20 +1915,16 @@ CDCDB::~CDCDB() {
delete ((CDCDBImpl*)_impl);
}
uint64_t CDCDB::processCDCReq(bool sync, EggsTime time, uint64_t logIndex, const CDCReqContainer& req, CDCStep& step, CDCStatus& status) {
return ((CDCDBImpl*)_impl)->processCDCReq(sync, time, logIndex, req, step, status);
void CDCDB::bootstrap(bool sync, uint64_t logIndex, CDCStep& step) {
return ((CDCDBImpl*)_impl)->bootstrap(sync, logIndex, step);
}
void CDCDB::processShardResp(bool sync, EggsTime time, uint64_t logIndex, EggsError respError, const ShardRespContainer* resp, CDCStep& step, CDCStatus& status) {
return ((CDCDBImpl*)_impl)->processShardResp(sync, time, logIndex, respError, resp, step, status);
}
void CDCDB::startNextTransaction(bool sync, EggsTime time, uint64_t logIndex, CDCStep& step, CDCStatus& status) {
return ((CDCDBImpl*)_impl)->startNextTransaction(sync, time, logIndex, step, status);
void CDCDB::update(bool sync, uint64_t logIndex, const std::vector<CDCReqContainer>& cdcReqs, const std::vector<CDCShardResp>& shardResps, CDCStep& step, std::vector<CDCTxnId>& cdcReqsTxnIds) {
return ((CDCDBImpl*)_impl)->update(sync, logIndex, cdcReqs, shardResps, step, cdcReqsTxnIds);
}
uint64_t CDCDB::lastAppliedLogEntry() {
return ((CDCDBImpl*)_impl)->_lastAppliedLogEntry();
return ((CDCDBImpl*)_impl)->_lastAppliedLogEntryDB();
}
void CDCDB::rocksDBMetrics(std::unordered_map<std::string, uint64_t>& values) {

View File

@@ -1,12 +1,38 @@
#pragma once
#include "unordered_map"
#include <unordered_map>
#include <optional>
#include "Bincode.hpp"
#include "Msgs.hpp"
#include "Env.hpp"
#include "Shuckle.hpp"
// This exists purely for type safety
struct CDCTxnId {
uint64_t x;
CDCTxnId() : x(0) {} // txn ids are never zeros
CDCTxnId(uint64_t x_) : x(x_) {}
bool operator==(const CDCTxnId rhs) const {
return x == rhs.x;
}
bool operator!=(const CDCTxnId rhs) const {
return x != rhs.x;
}
};
std::ostream& operator<<(std::ostream& out, CDCTxnId id);
template <>
struct std::hash<CDCTxnId> {
std::size_t operator()(const CDCTxnId key) const {
return std::hash<uint64_t>{}(key.x);
}
};
struct CDCShardReq {
ShardId shid;
bool repeated; // This request is exactly the same as the previous one.
@@ -21,49 +47,35 @@ struct CDCShardReq {
std::ostream& operator<<(std::ostream& out, const CDCShardReq& x);
struct CDCStep {
// If non-zero, a transaction has just finished, and here we have
// the response (whether an error or a response).
uint64_t txnFinished;
EggsError err; // if NO_ERROR, resp is contains the response.
struct CDCFinished {
// If err is not NO_ERROR, resp is not filled in
EggsError err;
CDCRespContainer resp;
// If non-zero, a transaction is running, but we need something
// from a shard to have it proceed.
//
// We have !((finishedTxn != 0) && (txnNeedsShard != 0)) as an invariant
// -- we can't have finished and be running a thing in the same step.
uint64_t txnNeedsShard;
CDCShardReq shardReq;
// If non-zero, there is a transaction after the current one waiting
// to be executed. Only filled in if `txnNeedsShard == 0`.
// Useful to decide when to call `startNextTransaction` (although
// calling it is safe in any case).
uint64_t nextTxn;
void clear() {
txnFinished = 0;
txnNeedsShard = 0;
nextTxn = 0;
}
};
// Only used for timing purposes, there is some overlap with CDCStep,
// but we separate it out for code robustness (we just get this info
// every time we touch the db).
struct CDCStatus {
uint64_t runningTxn; // 0 if nothing
CDCMessageKind runningTxnKind; // only relevant if it's running
std::ostream& operator<<(std::ostream& out, const CDCFinished& x);
void reset() {
runningTxn = 0;
runningTxnKind = (CDCMessageKind)0;
struct CDCStep {
std::vector<std::pair<CDCTxnId, CDCFinished>> finishedTxns; // txns which have finished
std::vector<std::pair<CDCTxnId, CDCShardReq>> runningTxns; // txns which need a new shard request
void clear() {
finishedTxns.clear();
runningTxns.clear();
}
};
std::ostream& operator<<(std::ostream& out, const CDCStep& x);
struct CDCShardResp {
CDCTxnId txnId; // the transaction id we're getting a response for
// if err != NO_ERROR, resp is not filled in
EggsError err;
ShardRespContainer resp;
};
std::ostream& operator<<(std::ostream& out, const CDCShardResp& x);
struct CDCDB {
private:
void* _impl;
@@ -81,52 +93,30 @@ public:
// responses.
//
// The functions below cannot be called concurrently.
//
// TODO one thing that we'd like to do (outside the deterministic state
// machine) is apply backpressure when too many txns are enqueued. It's
// not good to do it inside the state machine, because then we'd be marrying
// the deterministic state update function to such heuristics, which seems
// imprudent. So we'd like some function returning the length of the queue.
// Enqueues a cdc request, and immediately starts it if the system is currently
// idle. Returns the txn id that got assigned to the txn.
uint64_t processCDCReq(
bool sync, // Whether to persist synchronously. Unneeded if log entries are persisted already.
EggsTime time,
// Gives you what to do when the CDC is started back up. It'll basically just
// tell you to send some requests to shards. You need to run this when starting.
void bootstrap(
bool sync,
uint64_t logIndex,
const CDCReqContainer& req,
CDCStep& step,
CDCStatus& status
CDCStep& step
);
// Advances the CDC state using the given shard response.
// Enqueues some CDC requests, and immediately starts it if possible.
// Returns the txn id that was assigned to each request.
//
// This function crashes hard if the caller passes it a response it's not expecting. So the caller
// should track responses and make sure only the correct one is passed in.
void processShardResp(
bool sync, // Whether to persist synchronously. Unneeded if log entries are persisted already.
EggsTime time,
uint64_t logIndex,
// (err == NO_ERROR) == (req != nullptr)
EggsError err,
const ShardRespContainer* req,
CDCStep& step,
CDCStatus& status
);
// Does what it can to advance the state of the system, by starting the next
// transaction in line (if any). In any case, it returns what there is to do next
// in `step`.
// Also, advances the CDC state using some shard responses.
//
// It's fine to call this function even if there's nothing to do -- and in fact
// you should do that when starting up the CDC, to make sure to finish
// in-flight CDC transactions.
void startNextTransaction(
bool sync, // Whether to persist synchronously. Unneeded if log entries are persisted already.
EggsTime time,
// This function crashes hard if the caller passes it a response it's not
// expecting. So the caller should track responses and make sure only relevant
// ones are passed in.
void update(
bool sync,
uint64_t logIndex,
const std::vector<CDCReqContainer>& cdcReqs,
const std::vector<CDCShardResp>& shardResps,
CDCStep& step,
CDCStatus& status
std::vector<CDCTxnId>& cdcReqsTxnIds // output txn ids for all the requests
);
// The index of the last log entry persisted to the DB

View File

@@ -11,6 +11,7 @@
#include "RocksDBUtils.hpp"
#include "Msgs.hpp"
#include "Time.hpp"
#include "CDCDB.hpp"
enum class CDCMetadataKey : uint8_t {
LAST_APPLIED_LOG_ENTRY = 0,
@@ -20,19 +21,92 @@ enum class CDCMetadataKey : uint8_t {
EXECUTING_TXN = 4,
EXECUTING_TXN_STATE = 6,
LAST_DIRECTORY_ID = 7,
VERSION = 8,
};
constexpr CDCMetadataKey LAST_APPLIED_LOG_ENTRY_KEY = CDCMetadataKey::LAST_APPLIED_LOG_ENTRY;
constexpr CDCMetadataKey LAST_TXN_KEY = CDCMetadataKey::LAST_TXN;
constexpr CDCMetadataKey FIRST_TXN_IN_QUEUE_KEY = CDCMetadataKey::FIRST_TXN_IN_QUEUE;
constexpr CDCMetadataKey LAST_TXN_IN_QUEUE_KEY = CDCMetadataKey::LAST_TXN_IN_QUEUE;
constexpr CDCMetadataKey EXECUTING_TXN_KEY = CDCMetadataKey::EXECUTING_TXN;
constexpr CDCMetadataKey EXECUTING_TXN_STATE_KEY = CDCMetadataKey::EXECUTING_TXN_STATE;
constexpr CDCMetadataKey NEXT_DIRECTORY_ID_KEY = CDCMetadataKey::LAST_DIRECTORY_ID;
constexpr CDCMetadataKey LAST_APPLIED_LOG_ENTRY_KEY = CDCMetadataKey::LAST_APPLIED_LOG_ENTRY; // V0, V1
constexpr CDCMetadataKey LAST_TXN_KEY = CDCMetadataKey::LAST_TXN; // V0, V1
constexpr CDCMetadataKey FIRST_TXN_IN_QUEUE_KEY = CDCMetadataKey::FIRST_TXN_IN_QUEUE; // V0
constexpr CDCMetadataKey LAST_TXN_IN_QUEUE_KEY = CDCMetadataKey::LAST_TXN_IN_QUEUE; // V0
constexpr CDCMetadataKey EXECUTING_TXN_KEY = CDCMetadataKey::EXECUTING_TXN; // V0
constexpr CDCMetadataKey EXECUTING_TXN_STATE_KEY = CDCMetadataKey::EXECUTING_TXN_STATE; // V0
constexpr CDCMetadataKey NEXT_DIRECTORY_ID_KEY = CDCMetadataKey::LAST_DIRECTORY_ID; // V0, V1
constexpr CDCMetadataKey VERSION_KEY = CDCMetadataKey::VERSION; // V1
inline rocksdb::Slice cdcMetadataKey(const CDCMetadataKey* k) {
return rocksdb::Slice((const char*)k, sizeof(*k));
}
struct CDCTxnIdKey {
FIELDS(
BE, CDCTxnId, id, setIdUnchecked,
END_STATIC
)
void setId(CDCTxnId i) {
ALWAYS_ASSERT(i.x != 0);
setIdUnchecked(i);
}
static StaticValue<CDCTxnIdKey> Static(CDCTxnId id) {
auto x = StaticValue<CDCTxnIdKey>();
x().setId(id);
return x;
}
};
struct CDCTxnIdValue {
FIELDS(
LE, CDCTxnId, id, setIdUnchecked,
END_STATIC
)
void setId(CDCTxnId i) {
ALWAYS_ASSERT(i.x != 0);
setIdUnchecked(i);
}
static StaticValue<CDCTxnIdValue> Static(CDCTxnId id) {
auto x = StaticValue<CDCTxnIdValue>();
x().setId(id);
return x;
}
};
// This data structure, conceptually, is std::unordered_map<InodeId, std::vector<CDCTxnId>>.
//
// To encode this in RocksDB, we store (InodeId, CDCTxnId) keys with no values. Txn ids are
// increasing so the order will be naturally what we want.
//
// We also store a sentinel with the head of the list. This is to avoid having to step on many
// deleted keys when checking if a dir is already locked.
//
// The functions adding/removing elements to the list are tasked with bookeeping the sentinel.
struct DirsToTxnsKey {
FIELDS(
BE, InodeId, dirId, setDirId,
BE, uint64_t, maybeTxnId, setMaybeTxnId, // if 0, it's a sentinel
END_STATIC
)
bool isSentinel() const {
return maybeTxnId() == 0;
}
CDCTxnId txnId() const {
ALWAYS_ASSERT(maybeTxnId() != 0);
return maybeTxnId();
}
void setTxnId(CDCTxnId txnId) {
ALWAYS_ASSERT(txnId.x != 0);
setMaybeTxnId(txnId.x);
}
void setSentinel() {
setMaybeTxnId(0);
}
};
struct MakeDirectoryState {
FIELDS(
LE, InodeId, dirId, setDirId,

View File

@@ -7,6 +7,11 @@
#include <stdint.h>
#include <stddef.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#ifdef __cplusplus
extern "C" {
@@ -47,6 +52,31 @@ static void wyhash64_bytes(uint64_t* state, uint8_t* bytes, size_t len) {
}
}
// Not specific to wyhash, just handy
__attribute__((unused))
static uint64_t wyhash64_rand() {
int fd = open("/dev/urandom", O_RDONLY);
if (fd < 0) {
fprintf(stderr, "could not open /dev/urandom: %d", errno);
exit(1);
}
uint64_t x;
ssize_t r = read(fd, &x, sizeof(x));
if (r < 0) {
fprintf(stderr, "could read /dev/urandom: %d", errno);
exit(1);
}
if (r != sizeof(x)) {
fprintf(stderr, "expected %ld bytes from /dev/urandom, got %ld", sizeof(x), r);
exit(1);
}
if (close(fd) < 0) {
fprintf(stderr, "could not close /dev/urandom: %d", errno);
exit(1);
}
return x;
}
#ifdef __cplusplus
}
#endif

View File

@@ -302,6 +302,15 @@ func (r *RunTests) run(
},
)
r.test(
log,
"parallel dirs",
"",
func(counters *lib.ClientCounters) {
parallelDirsTest(log, r.shuckleAddress(), counters)
},
)
largeFileOpts := largeFileTestOpts{
fileSize: 1 << 30, // 1GiB
}
@@ -314,15 +323,6 @@ func (r *RunTests) run(
},
)
r.test(
log,
"parallel dirs",
"",
func(counters *lib.ClientCounters) {
parallelDirsTest(log, r.shuckleAddress(), counters)
},
)
rsyncOpts := rsyncTestOpts{
maxFileSize: 200 << 20, // 200MiB
numFiles: 100, // 20GiB

View File

@@ -936,6 +936,7 @@ func NewClientDirectNoAddrs(
log *Logger,
) (c *Client, err error) {
c = &Client{
// do not catch requests from previous executions
requestIdCounter: rand.Uint64(),
fetchBlockBufs: sync.Pool{
New: func() any {