Files
OpenSpace/modules/globebrowsing/chunk/chunk.cpp
Alexander Bock d5063b116c Compile fixes
2016-08-29 02:33:50 +02:00

237 lines
10 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2016 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <ghoul/misc/assert.h>
#include <openspace/engine/openspaceengine.h>
#include <modules/globebrowsing/chunk/chunk.h>
#include <modules/globebrowsing/chunk/chunkedlodglobe.h>
#include <modules/globebrowsing/tile/layeredtextures.h>
#include <modules/globebrowsing/tile/tileioresult.h>
#include <algorithm>
namespace {
const std::string _loggerCat = "Chunk";
}
namespace openspace {
const float Chunk::DEFAULT_HEIGHT = 0.0f;
Chunk::Chunk(ChunkedLodGlobe* owner, const ChunkIndex& chunkIndex, bool initVisible)
: _owner(owner)
, _surfacePatch(chunkIndex)
, _index(chunkIndex)
, _isVisible(initVisible)
{
}
const GeodeticPatch& Chunk::surfacePatch() const {
return _surfacePatch;
}
ChunkedLodGlobe* const Chunk::owner() const {
return _owner;
}
const ChunkIndex Chunk::index() const {
return _index;
}
bool Chunk::isVisible() const {
return _isVisible;
}
void Chunk::setIndex(const ChunkIndex& index) {
_index = index;
_surfacePatch = GeodeticPatch(index);
}
void Chunk::setOwner(ChunkedLodGlobe* newOwner) {
_owner = newOwner;
}
Chunk::Status Chunk::update(const RenderData& data) {
auto savedCamera = _owner->getSavedCamera();
const Camera& camRef = savedCamera != nullptr ? *savedCamera : data.camera;
RenderData myRenderData = { camRef, data.position, data.doPerformanceMeasurement };
_isVisible = true;
if (_owner->testIfCullable(*this, myRenderData)) {
_isVisible = false;
return Status::WANT_MERGE;
}
int desiredLevel = _owner->getDesiredLevel(*this, myRenderData);
if (desiredLevel < _index.level) return Status::WANT_MERGE;
else if (_index.level < desiredLevel) return Status::WANT_SPLIT;
else return Status::DO_NOTHING;
}
Chunk::BoundingHeights Chunk::getBoundingHeights() const {
BoundingHeights boundingHeights;
boundingHeights.max = 0;
boundingHeights.min = 0;
boundingHeights.available = false;
// In the future, this should be abstracted away and more easily queryable.
// One must also handle how to sample pick one out of multiplte heightmaps
auto tileProviderManager = owner()->getTileProviderManager();
auto heightMapProviders = tileProviderManager->getTileProviderGroup(LayeredTextures::HeightMaps).getActiveTileProviders();
size_t HEIGHT_CHANNEL = 0;
const TileProviderGroup& heightmaps = tileProviderManager->getTileProviderGroup(LayeredTextures::HeightMaps);
std::vector<TileAndTransform> tiles = TileSelector::getTilesSortedByHighestResolution(heightmaps, _index);
bool lastHadMissingData = true;
for (auto tile : tiles) {
bool goodTile = tile.tile.status == Tile::Status::OK;
bool hasPreprocessData = tile.tile.preprocessData != nullptr;
if (goodTile && hasPreprocessData) {
auto preprocessData = tile.tile.preprocessData;
if (!boundingHeights.available) {
if (preprocessData->hasMissingData[HEIGHT_CHANNEL]) {
boundingHeights.min = std::min(DEFAULT_HEIGHT, preprocessData->minValues[HEIGHT_CHANNEL]);
boundingHeights.max = std::max(DEFAULT_HEIGHT, preprocessData->maxValues[HEIGHT_CHANNEL]);
}
else {
boundingHeights.min = preprocessData->minValues[HEIGHT_CHANNEL];
boundingHeights.max = preprocessData->maxValues[HEIGHT_CHANNEL];
}
boundingHeights.available = true;
}
else {
boundingHeights.min = std::min(boundingHeights.min, preprocessData->minValues[HEIGHT_CHANNEL]);
boundingHeights.max = std::max(boundingHeights.max, preprocessData->maxValues[HEIGHT_CHANNEL]);
}
lastHadMissingData = preprocessData->hasMissingData[HEIGHT_CHANNEL];
}
// Allow for early termination
if (!lastHadMissingData) {
break;
}
}
const TileProviderGroup& heightmapOverlays = tileProviderManager->getTileProviderGroup(LayeredTextures::HeightMapOverlays);
TileAndTransform mostHighResHeightmapOverlay = TileSelector::getHighestResolutionTile(heightmapOverlays, _index);
if (mostHighResHeightmapOverlay.tile.status == Tile::Status::OK) {
auto preprocessData = mostHighResHeightmapOverlay.tile.preprocessData;
if (preprocessData != nullptr && preprocessData->minValues[0] < preprocessData->maxValues[0]) {
if (boundingHeights.available) {
boundingHeights.min = std::min(boundingHeights.min, preprocessData->minValues[0]);
boundingHeights.max = std::max(boundingHeights.max, preprocessData->maxValues[0]);
}
else {
boundingHeights.min = preprocessData->minValues[0];
boundingHeights.max = preprocessData->maxValues[0];
boundingHeights.available = true;
if (preprocessData->hasMissingData[0]) {
boundingHeights.min = std::min(DEFAULT_HEIGHT, preprocessData->minValues[0]);
boundingHeights.max = std::max(DEFAULT_HEIGHT, preprocessData->maxValues[0]);
}
}
}
}
return boundingHeights;
}
std::vector<glm::dvec4> Chunk::getBoundingPolyhedronCorners() const {
const Ellipsoid& ellipsoid = owner()->ellipsoid();
const GeodeticPatch& patch = surfacePatch();
BoundingHeights boundingHeight = getBoundingHeights();
// assume worst case
double patchCenterRadius = ellipsoid.maximumRadius();
double maxCenterRadius = patchCenterRadius + boundingHeight.max;
Geodetic2 halfSize = patch.halfSize();
// As the patch is curved, the maximum height offsets at the corners must be long
// enough to cover large enough to cover a boundingHeight.max at the center of the
// patch.
// Approximating scaleToCoverCenter by assuming the latitude and longitude angles
// of "halfSize" are equal to the angles they create from the center of the
// globe to the patch corners. This is true for the longitude direction when
// the ellipsoid can be approximated as a sphere and for the latitude for patches
// close to the equator. Close to the pole this will lead to a bigger than needed
// value for scaleToCoverCenter. However, this is a simple calculation and a good
// Approximation.
double y1 = tan(halfSize.lat);
double y2 = tan(halfSize.lon);
double scaleToCoverCenter = sqrt(1 + pow(y1, 2) + pow(y2, 2));
double maxCornerHeight = maxCenterRadius * scaleToCoverCenter - patchCenterRadius;
bool chunkIsNorthOfEquator = patch.isNorthern();
// The minimum height offset, however, we can simply
double minCornerHeight = boundingHeight.min;
std::vector<glm::dvec4> corners(8);
Scalar latCloseToEquator = patch.edgeLatitudeNearestEquator();
Geodetic3 p1Geodetic = { { latCloseToEquator, patch.minLon() }, maxCornerHeight };
Geodetic3 p2Geodetic = { { latCloseToEquator, patch.maxLon() }, maxCornerHeight };
glm::vec3 p1 = ellipsoid.cartesianPosition(p1Geodetic);
glm::vec3 p2 = ellipsoid.cartesianPosition(p2Geodetic);
glm::vec3 p = 0.5f * (p1 + p2);
Geodetic2 pGeodetic = ellipsoid.cartesianToGeodetic2(p);
Scalar latDiff = latCloseToEquator - pGeodetic.lat;
for (size_t i = 0; i < 8; i++) {
Quad q = (Quad)(i % 4);
double cornerHeight = i < 4 ? minCornerHeight : maxCornerHeight;
Geodetic3 cornerGeodetic = { patch.getCorner(q), cornerHeight };
bool cornerIsNorthern = !((i / 2) % 2);
bool cornerCloseToEquator = chunkIsNorthOfEquator ^ cornerIsNorthern;
if (cornerCloseToEquator) {
cornerGeodetic.geodetic2.lat += latDiff;
}
corners[i] = dvec4(ellipsoid.cartesianPosition(cornerGeodetic), 1);
}
return corners;
}
} // namespace openspace