mirror of
https://github.com/OpenSpace/OpenSpace.git
synced 2026-01-02 09:41:13 -06:00
237 lines
10 KiB
C++
237 lines
10 KiB
C++
/*****************************************************************************************
|
|
* *
|
|
* OpenSpace *
|
|
* *
|
|
* Copyright (c) 2014-2016 *
|
|
* *
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
|
|
* software and associated documentation files (the "Software"), to deal in the Software *
|
|
* without restriction, including without limitation the rights to use, copy, modify, *
|
|
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
|
|
* permit persons to whom the Software is furnished to do so, subject to the following *
|
|
* conditions: *
|
|
* *
|
|
* The above copyright notice and this permission notice shall be included in all copies *
|
|
* or substantial portions of the Software. *
|
|
* *
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
|
|
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
|
|
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
|
|
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
|
|
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
|
|
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
|
|
****************************************************************************************/
|
|
|
|
|
|
#include <ghoul/misc/assert.h>
|
|
|
|
#include <openspace/engine/openspaceengine.h>
|
|
|
|
#include <modules/globebrowsing/chunk/chunk.h>
|
|
#include <modules/globebrowsing/chunk/chunkedlodglobe.h>
|
|
#include <modules/globebrowsing/tile/layeredtextures.h>
|
|
#include <modules/globebrowsing/tile/tileioresult.h>
|
|
|
|
#include <algorithm>
|
|
|
|
namespace {
|
|
const std::string _loggerCat = "Chunk";
|
|
}
|
|
|
|
namespace openspace {
|
|
|
|
const float Chunk::DEFAULT_HEIGHT = 0.0f;
|
|
|
|
Chunk::Chunk(ChunkedLodGlobe* owner, const ChunkIndex& chunkIndex, bool initVisible)
|
|
: _owner(owner)
|
|
, _surfacePatch(chunkIndex)
|
|
, _index(chunkIndex)
|
|
, _isVisible(initVisible)
|
|
{
|
|
|
|
}
|
|
|
|
const GeodeticPatch& Chunk::surfacePatch() const {
|
|
return _surfacePatch;
|
|
}
|
|
|
|
ChunkedLodGlobe* const Chunk::owner() const {
|
|
return _owner;
|
|
}
|
|
|
|
const ChunkIndex Chunk::index() const {
|
|
return _index;
|
|
}
|
|
|
|
bool Chunk::isVisible() const {
|
|
return _isVisible;
|
|
}
|
|
|
|
void Chunk::setIndex(const ChunkIndex& index) {
|
|
_index = index;
|
|
_surfacePatch = GeodeticPatch(index);
|
|
}
|
|
|
|
void Chunk::setOwner(ChunkedLodGlobe* newOwner) {
|
|
_owner = newOwner;
|
|
}
|
|
|
|
Chunk::Status Chunk::update(const RenderData& data) {
|
|
auto savedCamera = _owner->getSavedCamera();
|
|
const Camera& camRef = savedCamera != nullptr ? *savedCamera : data.camera;
|
|
RenderData myRenderData = { camRef, data.position, data.doPerformanceMeasurement };
|
|
|
|
|
|
_isVisible = true;
|
|
if (_owner->testIfCullable(*this, myRenderData)) {
|
|
_isVisible = false;
|
|
return Status::WANT_MERGE;
|
|
}
|
|
|
|
int desiredLevel = _owner->getDesiredLevel(*this, myRenderData);
|
|
|
|
if (desiredLevel < _index.level) return Status::WANT_MERGE;
|
|
else if (_index.level < desiredLevel) return Status::WANT_SPLIT;
|
|
else return Status::DO_NOTHING;
|
|
}
|
|
|
|
Chunk::BoundingHeights Chunk::getBoundingHeights() const {
|
|
BoundingHeights boundingHeights;
|
|
boundingHeights.max = 0;
|
|
boundingHeights.min = 0;
|
|
boundingHeights.available = false;
|
|
|
|
// In the future, this should be abstracted away and more easily queryable.
|
|
// One must also handle how to sample pick one out of multiplte heightmaps
|
|
auto tileProviderManager = owner()->getTileProviderManager();
|
|
|
|
|
|
auto heightMapProviders = tileProviderManager->getTileProviderGroup(LayeredTextures::HeightMaps).getActiveTileProviders();
|
|
|
|
|
|
size_t HEIGHT_CHANNEL = 0;
|
|
const TileProviderGroup& heightmaps = tileProviderManager->getTileProviderGroup(LayeredTextures::HeightMaps);
|
|
std::vector<TileAndTransform> tiles = TileSelector::getTilesSortedByHighestResolution(heightmaps, _index);
|
|
bool lastHadMissingData = true;
|
|
for (auto tile : tiles) {
|
|
bool goodTile = tile.tile.status == Tile::Status::OK;
|
|
bool hasPreprocessData = tile.tile.preprocessData != nullptr;
|
|
|
|
if (goodTile && hasPreprocessData) {
|
|
auto preprocessData = tile.tile.preprocessData;
|
|
|
|
if (!boundingHeights.available) {
|
|
if (preprocessData->hasMissingData[HEIGHT_CHANNEL]) {
|
|
boundingHeights.min = std::min(DEFAULT_HEIGHT, preprocessData->minValues[HEIGHT_CHANNEL]);
|
|
boundingHeights.max = std::max(DEFAULT_HEIGHT, preprocessData->maxValues[HEIGHT_CHANNEL]);
|
|
}
|
|
else {
|
|
boundingHeights.min = preprocessData->minValues[HEIGHT_CHANNEL];
|
|
boundingHeights.max = preprocessData->maxValues[HEIGHT_CHANNEL];
|
|
}
|
|
boundingHeights.available = true;
|
|
}
|
|
else {
|
|
boundingHeights.min = std::min(boundingHeights.min, preprocessData->minValues[HEIGHT_CHANNEL]);
|
|
boundingHeights.max = std::max(boundingHeights.max, preprocessData->maxValues[HEIGHT_CHANNEL]);
|
|
}
|
|
lastHadMissingData = preprocessData->hasMissingData[HEIGHT_CHANNEL];
|
|
}
|
|
|
|
// Allow for early termination
|
|
if (!lastHadMissingData) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
const TileProviderGroup& heightmapOverlays = tileProviderManager->getTileProviderGroup(LayeredTextures::HeightMapOverlays);
|
|
TileAndTransform mostHighResHeightmapOverlay = TileSelector::getHighestResolutionTile(heightmapOverlays, _index);
|
|
if (mostHighResHeightmapOverlay.tile.status == Tile::Status::OK) {
|
|
auto preprocessData = mostHighResHeightmapOverlay.tile.preprocessData;
|
|
if (preprocessData != nullptr && preprocessData->minValues[0] < preprocessData->maxValues[0]) {
|
|
if (boundingHeights.available) {
|
|
boundingHeights.min = std::min(boundingHeights.min, preprocessData->minValues[0]);
|
|
boundingHeights.max = std::max(boundingHeights.max, preprocessData->maxValues[0]);
|
|
}
|
|
else {
|
|
boundingHeights.min = preprocessData->minValues[0];
|
|
boundingHeights.max = preprocessData->maxValues[0];
|
|
boundingHeights.available = true;
|
|
|
|
if (preprocessData->hasMissingData[0]) {
|
|
boundingHeights.min = std::min(DEFAULT_HEIGHT, preprocessData->minValues[0]);
|
|
boundingHeights.max = std::max(DEFAULT_HEIGHT, preprocessData->maxValues[0]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
return boundingHeights;
|
|
}
|
|
|
|
std::vector<glm::dvec4> Chunk::getBoundingPolyhedronCorners() const {
|
|
const Ellipsoid& ellipsoid = owner()->ellipsoid();
|
|
const GeodeticPatch& patch = surfacePatch();
|
|
|
|
BoundingHeights boundingHeight = getBoundingHeights();
|
|
|
|
// assume worst case
|
|
double patchCenterRadius = ellipsoid.maximumRadius();
|
|
|
|
double maxCenterRadius = patchCenterRadius + boundingHeight.max;
|
|
Geodetic2 halfSize = patch.halfSize();
|
|
|
|
// As the patch is curved, the maximum height offsets at the corners must be long
|
|
// enough to cover large enough to cover a boundingHeight.max at the center of the
|
|
// patch.
|
|
// Approximating scaleToCoverCenter by assuming the latitude and longitude angles
|
|
// of "halfSize" are equal to the angles they create from the center of the
|
|
// globe to the patch corners. This is true for the longitude direction when
|
|
// the ellipsoid can be approximated as a sphere and for the latitude for patches
|
|
// close to the equator. Close to the pole this will lead to a bigger than needed
|
|
// value for scaleToCoverCenter. However, this is a simple calculation and a good
|
|
// Approximation.
|
|
double y1 = tan(halfSize.lat);
|
|
double y2 = tan(halfSize.lon);
|
|
double scaleToCoverCenter = sqrt(1 + pow(y1, 2) + pow(y2, 2));
|
|
|
|
double maxCornerHeight = maxCenterRadius * scaleToCoverCenter - patchCenterRadius;
|
|
|
|
bool chunkIsNorthOfEquator = patch.isNorthern();
|
|
|
|
// The minimum height offset, however, we can simply
|
|
double minCornerHeight = boundingHeight.min;
|
|
std::vector<glm::dvec4> corners(8);
|
|
|
|
Scalar latCloseToEquator = patch.edgeLatitudeNearestEquator();
|
|
Geodetic3 p1Geodetic = { { latCloseToEquator, patch.minLon() }, maxCornerHeight };
|
|
Geodetic3 p2Geodetic = { { latCloseToEquator, patch.maxLon() }, maxCornerHeight };
|
|
|
|
glm::vec3 p1 = ellipsoid.cartesianPosition(p1Geodetic);
|
|
glm::vec3 p2 = ellipsoid.cartesianPosition(p2Geodetic);
|
|
glm::vec3 p = 0.5f * (p1 + p2);
|
|
Geodetic2 pGeodetic = ellipsoid.cartesianToGeodetic2(p);
|
|
Scalar latDiff = latCloseToEquator - pGeodetic.lat;
|
|
|
|
for (size_t i = 0; i < 8; i++) {
|
|
Quad q = (Quad)(i % 4);
|
|
double cornerHeight = i < 4 ? minCornerHeight : maxCornerHeight;
|
|
Geodetic3 cornerGeodetic = { patch.getCorner(q), cornerHeight };
|
|
|
|
bool cornerIsNorthern = !((i / 2) % 2);
|
|
bool cornerCloseToEquator = chunkIsNorthOfEquator ^ cornerIsNorthern;
|
|
if (cornerCloseToEquator) {
|
|
cornerGeodetic.geodetic2.lat += latDiff;
|
|
}
|
|
|
|
corners[i] = dvec4(ellipsoid.cartesianPosition(cornerGeodetic), 1);
|
|
}
|
|
return corners;
|
|
}
|
|
|
|
|
|
} // namespace openspace
|