Files
OpenSpace/src/rendering/abufferrenderer.cpp
2018-04-22 09:15:42 +00:00

1020 lines
34 KiB
C++

/*****************************************************************************************
* *
* OpenSpace *
* *
* Copyright (c) 2014-2018 *
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy of this *
* software and associated documentation files (the "Software"), to deal in the Software *
* without restriction, including without limitation the rights to use, copy, modify, *
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject to the following *
* conditions: *
* *
* The above copyright notice and this permission notice shall be included in all copies *
* or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, *
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT *
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF *
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE *
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
****************************************************************************************/
#include <openspace/rendering/abufferrenderer.h>
#include <openspace/engine/openspaceengine.h>
#include <openspace/engine/wrapper/windowwrapper.h>
#include <openspace/performance/performancemeasurement.h>
#include <openspace/rendering/raycastermanager.h>
#include <openspace/rendering/renderengine.h>
#include <openspace/rendering/renderable.h>
#include <openspace/rendering/volumeraycaster.h>
#include <openspace/rendering/deferredcaster.h>
#include <openspace/scene/scene.h>
#include <openspace/util/camera.h>
#include <openspace/util/updatestructures.h>
#include <openspace/util/timemanager.h>
#include <ghoul/opengl/programobject.h>
#include <ghoul/opengl/textureunit.h>
#include <ghoul/misc/dictionary.h>
#include <ghoul/misc/exception.h>
#include <string>
#include <iterator>
namespace {
constexpr const char* _loggerCat = "ABufferRenderer";
constexpr const char* BoundsFragmentShaderPath =
"${SHADERS}/abuffer/boundsabuffer.frag";
constexpr const char* RenderFragmentShaderPath =
"${SHADERS}/abuffer/renderabuffer.frag";
constexpr int MaxRaycasters = 32;
constexpr int MaxLayers = 32;
constexpr int MaxAverageLayers = 8;
} // namespace
namespace openspace {
ABufferRenderer::ABufferRenderer()
: _resolution(glm::ivec2(0))
, _dirtyResolution(true)
, _dirtyRendererData(true)
, _dirtyRaycastData(true)
, _dirtyResolveDictionary(true)
, _resolveProgram(nullptr)
, _hdrExposure(0.4f)
, _hdrBackground(2.8f)
, _gamma(2.2f)
{}
ABufferRenderer::~ABufferRenderer() {}
void ABufferRenderer::initialize() {
LINFO("Initializing ABufferRenderer");
const GLfloat size = 1.f;
const GLfloat vertex_data[] = {
// x y s t
-size, -size, 0.f, 1.f,
size, size, 0.f, 1.f,
-size, size, 0.f, 1.f,
-size, -size, 0.f, 1.f,
size, -size, 0.f, 1.f,
size, size, 0.f, 1.f,
};
glGenVertexArrays(1, &_screenQuad);
glBindVertexArray(_screenQuad);
glGenBuffers(1, &_vertexPositionBuffer);
glBindBuffer(GL_ARRAY_BUFFER, _vertexPositionBuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertex_data), vertex_data, GL_STATIC_DRAW);
glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, sizeof(GLfloat) * 4, nullptr);
glEnableVertexAttribArray(0);
glGenTextures(1, &_anchorPointerTexture);
glGenBuffers(1, &_anchorPointerTextureInitializer);
glGenBuffers(1, &_atomicCounterBuffer);
glBindBuffer(GL_ATOMIC_COUNTER_BUFFER, _atomicCounterBuffer);
glBufferData(GL_ATOMIC_COUNTER_BUFFER, sizeof(GLuint), nullptr, GL_DYNAMIC_COPY);
glGenBuffers(1, &_fragmentBuffer);
glGenTextures(1, &_fragmentTexture);
glGenTextures(1, &_mainColorTexture);
glGenTextures(1, &_mainDepthTexture);
glGenFramebuffers(1, &_mainFramebuffer);
GLint defaultFbo;
glGetIntegerv(GL_FRAMEBUFFER_BINDING, &defaultFbo);
updateResolution();
updateRendererData();
updateRaycastData();
updateResolveDictionary();
updateMSAASamplingPattern();
glBindFramebuffer(GL_FRAMEBUFFER, _mainFramebuffer);
glFramebufferTexture2D(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D_MULTISAMPLE,
_mainColorTexture,
0
);
glFramebufferTexture2D(
GL_FRAMEBUFFER,
GL_DEPTH_ATTACHMENT,
GL_TEXTURE_2D_MULTISAMPLE,
_mainDepthTexture,
0
);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
LERROR("Main framebuffer is not complete");
}
glBindFramebuffer(GL_FRAMEBUFFER, defaultFbo);
try {
ghoul::Dictionary dict;
dict.setValue("resolveData", _resolveDictionary);
dict.setValue("rendererData", _rendererData);
_resolveProgram = ghoul::opengl::ProgramObject::Build(
"ABuffer Resolve",
"${SHADERS}/abuffer/resolveabuffer.vert",
"${SHADERS}/abuffer/resolveabuffer.frag",
dict
);
} catch (const ghoul::RuntimeError& e) {
LERRORC(e.component, e.message);
}
OsEng.renderEngine().raycasterManager().addListener(*this);
}
void ABufferRenderer::deinitialize() {
LINFO("Deinitializing ABufferRenderer");
glDeleteBuffers(1, &_fragmentBuffer);
glDeleteTextures(1, &_fragmentTexture);
glDeleteTextures(1, &_anchorPointerTexture);
glDeleteBuffers(1, &_anchorPointerTextureInitializer);
glDeleteBuffers(1, &_atomicCounterBuffer);
glDeleteBuffers(1, &_vertexPositionBuffer);
glDeleteVertexArrays(1, &_screenQuad);
OsEng.renderEngine().raycasterManager().removeListener(*this);
}
void ABufferRenderer::raycastersChanged(VolumeRaycaster&, bool) {
_dirtyRaycastData = true;
}
void ABufferRenderer::update() {
PerfMeasure("ABufferRenderer::update");
// Make sure that the fragment buffer has the correct resoliution
// according to the output render buffer size
if (_dirtyResolution) {
updateResolution();
updateMSAASamplingPattern();
}
// Make sure that the renderengine gets the correct render data
// to feed into all render programs.
// This will trigger a recompilation of all the shader programs
// involved in rendering geometries.
if (_dirtyRendererData) {
updateRendererData();
}
// Make sure that all raycaster data is up to date.
if (_dirtyRaycastData) {
updateRaycastData();
}
// Make sure that the resolve dictionary is up to date.
// The resolve dictionary contains information for all
// ray casters, including shader include paths.
if (_dirtyResolveDictionary) {
updateResolveDictionary();
ghoul::Dictionary dict;
dict.setValue("resolveData", _resolveDictionary);
dict.setValue("rendererData", _rendererData);
_resolveProgram->setDictionary(dict);
}
// If the resolve dictionary changed (or a file changed on disk)
// then rebuild the resolve program.
if (_resolveProgram->isDirty()) {
try {
_resolveProgram->rebuildFromFile();
} catch (const ghoul::RuntimeError& error) {
LERRORC(error.component, error.message);
}
}
using K = VolumeRaycaster* const;
using V = std::unique_ptr<ghoul::opengl::ProgramObject>;
for (std::pair<K, V>& program : _boundsPrograms) {
if (program.second->isDirty()) {
try {
program.second->rebuildFromFile();
} catch (const ghoul::RuntimeError e) {
LERRORC(e.component, e.message);
}
}
}
}
void ABufferRenderer::updateMSAASamplingPattern() {
// @CLEANUP(abock): This should probably be merged with the same code from the
// framebuffer renderer?
LINFO("Updating MSAA Sampling Pattern");
constexpr const int GridSize = 32;
GLfloat step = 2.f / static_cast<GLfloat>(GridSize);
GLfloat sizeX = -1.0f;
GLfloat sizeY = 1.0f;
constexpr const int NVertex = 4 * 6;
// openPixelSizeVertexData
GLfloat vertexData[GridSize * GridSize * NVertex];
for (int y = 0; y < GridSize; ++y) {
for (int x = 0; x < GridSize; ++x) {
vertexData[y * GridSize * NVertex + x * NVertex] = sizeX;
vertexData[y * GridSize * NVertex + x * NVertex + 1] = sizeY - step;
vertexData[y * GridSize * NVertex + x * NVertex + 2] = 0.f;
vertexData[y * GridSize * NVertex + x * NVertex + 3] = 1.f;
vertexData[y * GridSize * NVertex + x * NVertex + 4] = sizeX + step;
vertexData[y * GridSize * NVertex + x * NVertex + 5] = sizeY;
vertexData[y * GridSize * NVertex + x * NVertex + 6] = 0.f;
vertexData[y * GridSize * NVertex + x * NVertex + 7] = 1.f;
vertexData[y * GridSize * NVertex + x * NVertex + 8] = sizeX;
vertexData[y * GridSize * NVertex + x * NVertex + 9] = sizeY;
vertexData[y * GridSize * NVertex + x * NVertex + 10] = 0.f;
vertexData[y * GridSize * NVertex + x * NVertex + 11] = 1.f;
vertexData[y * GridSize * NVertex + x * NVertex + 12] = sizeX;
vertexData[y * GridSize * NVertex + x * NVertex + 13] = sizeY - step;
vertexData[y * GridSize * NVertex + x * NVertex + 14] = 0.f;
vertexData[y * GridSize * NVertex + x * NVertex + 15] = 1.f;
vertexData[y * GridSize * NVertex + x * NVertex + 16] = sizeX + step;
vertexData[y * GridSize * NVertex + x * NVertex + 17] = sizeY - step;
vertexData[y * GridSize * NVertex + x * NVertex + 18] = 0.f;
vertexData[y * GridSize * NVertex + x * NVertex + 19] = 1.f;
vertexData[y * GridSize * NVertex + x * NVertex + 20] = sizeX + step;
vertexData[y * GridSize * NVertex + x * NVertex + 21] = sizeY;
vertexData[y * GridSize * NVertex + x * NVertex + 22] = 0.f;
vertexData[y * GridSize * NVertex + x * NVertex + 23] = 1.f;
sizeX += step;
}
sizeX = -1.f;
sizeY -= step;
}
GLuint pixelSizeQuadVAO = 0;
GLuint pixelSizeQuadVBO = 0;
glGenVertexArrays(1, &pixelSizeQuadVAO);
glBindVertexArray(pixelSizeQuadVAO);
glGenBuffers(1, &pixelSizeQuadVBO);
glBindBuffer(GL_ARRAY_BUFFER, pixelSizeQuadVBO);
glBufferData(
GL_ARRAY_BUFFER,
sizeof(GLfloat) * GridSize * GridSize * NVertex,
vertexData,
GL_STATIC_DRAW
);
// Position
glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, nullptr);
glEnableVertexAttribArray(0);
// Saves current state
GLint defaultFbo;
glGetIntegerv(GL_FRAMEBUFFER_BINDING, &defaultFbo);
GLint viewport[4];
glGetIntegerv(GL_VIEWPORT, viewport);
// Main framebuffer
GLuint pixelSizeTexture = 0;
GLuint pixelSizeFramebuffer = 0;
glGenTextures(1, &pixelSizeTexture);
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, pixelSizeTexture);
const GLsizei ONEPIXEL = 1;
glTexImage2DMultisample(
GL_TEXTURE_2D_MULTISAMPLE,
_nAaSamples,
GL_RGBA32F,
ONEPIXEL,
ONEPIXEL,
true
);
glViewport(0, 0, ONEPIXEL, ONEPIXEL);
glGenFramebuffers(1, &pixelSizeFramebuffer);
glBindFramebuffer(GL_FRAMEBUFFER, pixelSizeFramebuffer);
glFramebufferTexture2D(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D_MULTISAMPLE,
pixelSizeTexture,
0
);
GLenum textureBuffers[1] = { GL_COLOR_ATTACHMENT0 };
glDrawBuffers(1, textureBuffers);
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
LERROR("MSAA Sampling pattern framebuffer is not complete");
return;
}
std::unique_ptr<ghoul::opengl::ProgramObject> pixelSizeProgram =
ghoul::opengl::ProgramObject::Build(
"OnePixel MSAA",
"${SHADERS}/framebuffer/pixelSizeMSAA.vert",
"${SHADERS}/framebuffer/pixelSizeMSAA.frag"
);
pixelSizeProgram->activate();
// Draw sub-pixel grid
glEnable(GL_SAMPLE_SHADING);
glBindVertexArray(pixelSizeQuadVAO);
glDisable(GL_DEPTH_TEST);
glDepthMask(false);
glDrawArrays(GL_TRIANGLES, 0, GridSize * GridSize * 6);
glBindVertexArray(0);
glDepthMask(true);
glEnable(GL_DEPTH_TEST);
glDisable(GL_SAMPLE_SHADING);
pixelSizeProgram->deactivate();
// Now we render the Nx1 quad strip
GLuint nOneStripFramebuffer = 0;
GLuint nOneStripVAO = 0;
GLuint nOneStripVBO = 0;
GLuint nOneStripTexture = 0;
sizeX = -1.f;
step = 2.f / static_cast<GLfloat>(_nAaSamples);
std::vector<GLfloat> nOneStripVertexData(_nAaSamples * (NVertex + 12));
for (int x = 0; x < _nAaSamples; ++x) {
nOneStripVertexData[x * (NVertex + 12)] = sizeX;
nOneStripVertexData[x * (NVertex + 12) + 1] = -1.0f;
nOneStripVertexData[x * (NVertex + 12) + 2] = 0.0f;
nOneStripVertexData[x * (NVertex + 12) + 3] = 1.0f;
nOneStripVertexData[x * (NVertex + 12) + 4] = 0.0f;
nOneStripVertexData[x * (NVertex + 12) + 5] = 0.0f;
nOneStripVertexData[x * (NVertex + 12) + 6] = sizeX + step;
nOneStripVertexData[x * (NVertex + 12) + 7] = 1.0f;
nOneStripVertexData[x * (NVertex + 12) + 8] = 0.0f;
nOneStripVertexData[x * (NVertex + 12) + 9] = 1.0f;
nOneStripVertexData[x * (NVertex + 12) + 10] = 1.0f;
nOneStripVertexData[x * (NVertex + 12) + 11] = 1.0f;
nOneStripVertexData[x * (NVertex + 12) + 12] = sizeX;
nOneStripVertexData[x * (NVertex + 12) + 13] = 1.0f;
nOneStripVertexData[x * (NVertex + 12) + 14] = 0.0f;
nOneStripVertexData[x * (NVertex + 12) + 15] = 1.0f;
nOneStripVertexData[x * (NVertex + 12) + 16] = 1.0f;
nOneStripVertexData[x * (NVertex + 12) + 17] = 0.0f;
nOneStripVertexData[x * (NVertex + 12) + 18] = sizeX;
nOneStripVertexData[x * (NVertex + 12) + 19] = -1.0f;
nOneStripVertexData[x * (NVertex + 12) + 20] = 0.0f;
nOneStripVertexData[x * (NVertex + 12) + 21] = 1.0f;
nOneStripVertexData[x * (NVertex + 12) + 22] = 0.0f;
nOneStripVertexData[x * (NVertex + 12) + 23] = 0.0f;
nOneStripVertexData[x * (NVertex + 12) + 24] = sizeX + step;
nOneStripVertexData[x * (NVertex + 12) + 25] = -1.0f;
nOneStripVertexData[x * (NVertex + 12) + 26] = 0.0f;
nOneStripVertexData[x * (NVertex + 12) + 27] = 1.0f;
nOneStripVertexData[x * (NVertex + 12) + 28] = 0.0f;
nOneStripVertexData[x * (NVertex + 12) + 29] = 1.0f;
nOneStripVertexData[x * (NVertex + 12) + 30] = sizeX + step;
nOneStripVertexData[x * (NVertex + 12) + 31] = 1.0f;
nOneStripVertexData[x * (NVertex + 12) + 32] = 0.0f;
nOneStripVertexData[x * (NVertex + 12) + 33] = 1.0f;
nOneStripVertexData[x * (NVertex + 12) + 34] = 1.0f;
nOneStripVertexData[x * (NVertex + 12) + 35] = 1.0f;
sizeX += step;
}
glGenVertexArrays(1, &nOneStripVAO);
glBindVertexArray(nOneStripVAO);
glGenBuffers(1, &nOneStripVBO);
glBindBuffer(GL_ARRAY_BUFFER, nOneStripVBO);
glBufferData(
GL_ARRAY_BUFFER,
sizeof(GLfloat) * _nAaSamples * (NVertex + 12),
nOneStripVertexData.data(),
GL_STATIC_DRAW
);
// position
glVertexAttribPointer(
0,
4,
GL_FLOAT,
GL_FALSE,
sizeof(GLfloat) * 6,
nullptr
);
glEnableVertexAttribArray(0);
// texture coords
glVertexAttribPointer(
1,
2,
GL_FLOAT,
GL_FALSE,
sizeof(GLfloat) * 6,
reinterpret_cast<GLvoid*>(sizeof(GLfloat) * 4)
);
glEnableVertexAttribArray(1);
// fbo texture buffer
glGenTextures(1, &nOneStripTexture);
glBindTexture(GL_TEXTURE_2D, nOneStripTexture);
glTexImage2D(
GL_TEXTURE_2D,
0,
GL_RGBA32F,
_nAaSamples,
ONEPIXEL,
0,
GL_RGBA,
GL_FLOAT,
nullptr
);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glGenFramebuffers(1, &nOneStripFramebuffer);
glBindFramebuffer(GL_FRAMEBUFFER, nOneStripFramebuffer);
glFramebufferTexture2D(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D,
nOneStripTexture,
0
);
status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
LERROR("nOneStrip framebuffer is not complete");
}
glViewport(0, 0, _nAaSamples, ONEPIXEL);
std::unique_ptr<ghoul::opengl::ProgramObject> nOneStripProgram =
ghoul::opengl::ProgramObject::Build(
"OneStrip MSAA",
"${SHADERS}/framebuffer/nOneStripMSAA.vert",
"${SHADERS}/framebuffer/nOneStripMSAA.frag"
);
nOneStripProgram->activate();
ghoul::opengl::TextureUnit pixelSizeTextureUnit;
pixelSizeTextureUnit.activate();
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, pixelSizeTexture);
nOneStripProgram->setUniform("pixelSizeTexture", pixelSizeTextureUnit);
// render strip
glDrawBuffers(1, textureBuffers);
glClearColor(0.f, 1.f, 0.f, 1.f);
glClear(GL_COLOR_BUFFER_BIT);
glBindVertexArray(nOneStripVAO);
glDisable(GL_DEPTH_TEST);
glDepthMask(false);
for (int sample = 0; sample < _nAaSamples; ++sample) {
nOneStripProgram->setUniform("currentSample", sample);
glDrawArrays(GL_TRIANGLES, sample * 6, 6);
}
/*nOneStripProgram->setUniform("currentSample", 0);
glDrawArrays(GL_TRIANGLES, 0, 6 * _nAaSamples);*/
glDepthMask(true);
glEnable(GL_DEPTH_TEST);
glBindVertexArray(0);
saveTextureToMemory(GL_COLOR_ATTACHMENT0, _nAaSamples, 1, _mSAAPattern);
// Convert back to [-1, 1] range and then scales to the current viewport size:
for (int d = 0; d < _nAaSamples; ++d) {
_mSAAPattern[d * 3] = (2.0 * _mSAAPattern[d * 3] - 1.0) /
static_cast<double>(viewport[2]);
_mSAAPattern[(d * 3) + 1] = (2.0 * _mSAAPattern[(d * 3) + 1] - 1.0) /
static_cast<double>(viewport[3]);
_mSAAPattern[(d * 3) + 2] = 0.0;
}
nOneStripProgram->deactivate();
// Restores default state
glBindFramebuffer(GL_FRAMEBUFFER, defaultFbo);
glViewport(viewport[0], viewport[1], viewport[2], viewport[3]);
// Deletes unused buffers
glDeleteFramebuffers(1, &pixelSizeFramebuffer);
glDeleteTextures(1, &pixelSizeTexture);
glDeleteBuffers(1, &pixelSizeQuadVBO);
glDeleteVertexArrays(1, &pixelSizeQuadVAO);
glDeleteFramebuffers(1, &nOneStripFramebuffer);
glDeleteTextures(1, &nOneStripTexture);
glDeleteBuffers(1, &nOneStripVBO);
glDeleteVertexArrays(1, &nOneStripVAO);
}
void ABufferRenderer::render(Scene* scene, Camera* camera, float blackoutFactor,
bool doPerformanceMeasurements)
{
PerfMeasure("ABufferRenderer::render");
if (!scene || !camera) {
return;
}
_mainColorTextureUnit = std::make_unique<ghoul::opengl::TextureUnit>();
_mainColorTextureUnit->activate();
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, _mainColorTexture);
_mainDepthTextureUnit = std::make_unique<ghoul::opengl::TextureUnit>();
_mainDepthTextureUnit->activate();
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, _mainDepthTexture);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
GLint defaultFbo;
glGetIntegerv(GL_FRAMEBUFFER_BINDING, &defaultFbo);
glBindFramebuffer(GL_FRAMEBUFFER, _mainFramebuffer);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Reset
clear();
glEnable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
// Step 1: Render geometries to the fragment buffer
// Bind head-pointer image for read-write
glBindBufferBase(GL_ATOMIC_COUNTER_BUFFER, 0, _atomicCounterBuffer);
glBindImageTexture(0, _anchorPointerTexture, 0, GL_FALSE, 0, GL_READ_WRITE, GL_R32UI);
glBindImageTexture(1, _fragmentTexture, 0, GL_FALSE, 0, GL_READ_WRITE, GL_RGBA32UI);
// Render the scene to the fragment buffer. Collect renderer tasks (active raycasters)
int renderBinMask = static_cast<int>(Renderable::RenderBin::Background) |
static_cast<int>(Renderable::RenderBin::Opaque) |
static_cast<int>(Renderable::RenderBin::Transparent) |
static_cast<int>(Renderable::RenderBin::Overlay);
Time time = OsEng.timeManager().time();
RenderData data {
*camera,
psc(),
time,
doPerformanceMeasurements,
renderBinMask,
{}
};
RendererTasks tasks;
scene->render(data, tasks);
_blackoutFactor = blackoutFactor;
glBindFramebuffer(GL_FRAMEBUFFER, defaultFbo);
// Step 2: Perform raycasting tasks requested by the scene
for (const RaycasterTask& raycasterTask : tasks.raycasterTasks) {
VolumeRaycaster* raycaster = raycasterTask.raycaster;
ghoul::opengl::ProgramObject* program = _boundsPrograms[raycaster].get();
if (program) {
program->activate();
program->setUniform("_exit_", false);
raycaster->renderEntryPoints(raycasterTask.renderData, *program);
program->setUniform("_exit_", true);
raycaster->renderExitPoints(raycasterTask.renderData, *program);
program->deactivate();
}
else {
LWARNING("Raycaster is not attached when trying to perform raycaster task");
}
}
// Step 3: Resolve the buffer
_resolveProgram->activate();
// TEMPORARY GAMMA CORRECTION.
glm::vec3 cameraPos = data.camera.position().vec3();
float maxComponent = std::max(
std::max(std::abs(cameraPos.x), std::abs(cameraPos.y)), std::abs(cameraPos.z)
);
float logDistance = std::log(glm::length(cameraPos / maxComponent) * maxComponent)
/ std::log(10.f);
const float minLogDist = 15.f;
const float maxLogDist = 20.f;
float t = (logDistance - minLogDist) / (maxLogDist - minLogDist);
t = glm::clamp(t, 0.0f, 1.0f);
const float gamma = 1.f * (1.f - t) + 2.2f * t;
_resolveProgram->setUniform("gamma", gamma);
// END TEMPORARY GAMMA CORRECTION.
_resolveProgram->setUniform("mainColorTexture", _mainColorTextureUnit->unitNumber());
_resolveProgram->setUniform("mainDepthTexture", _mainDepthTextureUnit->unitNumber());
_resolveProgram->setUniform("blackoutFactor", _blackoutFactor);
_resolveProgram->setUniform("nAaSamples", _nAaSamples);
for (const RaycasterTask& raycasterTask : tasks.raycasterTasks) {
preRaycast(raycasterTask);
}
glBindVertexArray(_screenQuad);
glDrawArrays(GL_TRIANGLES, 0, 6);
for (const RaycasterTask& raycasterTask : tasks.raycasterTasks) {
postRaycast(raycasterTask);
}
_resolveProgram->deactivate();
_mainColorTextureUnit = nullptr;
_mainDepthTextureUnit = nullptr;
}
void ABufferRenderer::preRaycast(const RaycasterTask& raycasterTask) {
VolumeRaycaster& raycaster = *raycasterTask.raycaster;
const RaycastData& raycastData = _raycastData[&raycaster];
const RenderData& renderData = raycasterTask.renderData;
raycaster.preRaycast(raycastData, *_resolveProgram);
glm::vec3 localCameraPosition;
bool cameraIsInside = raycaster.cameraIsInside(renderData, localCameraPosition);
int uniformIndex = raycastData.id + 1; // uniforms are indexed from 1 (not from 0)
_resolveProgram->setUniform(
"insideRaycaster" + std::to_string(uniformIndex),
cameraIsInside
);
if (cameraIsInside) {
_resolveProgram->setUniform(
"cameraPosInRaycaster" + std::to_string(uniformIndex),
localCameraPosition
);
}
}
void ABufferRenderer::postRaycast(const RaycasterTask& raycasterTask) {
VolumeRaycaster& raycaster = *raycasterTask.raycaster;
const RaycastData& raycastData = _raycastData[&raycaster];
raycaster.postRaycast(raycastData, *_resolveProgram);
}
void ABufferRenderer::setResolution(glm::ivec2 res) {
if (res != _resolution) {
_resolution = std::move(res);
_dirtyResolution = true;
}
}
void ABufferRenderer::setNAaSamples(int nAaSamples) {
_nAaSamples = nAaSamples;
if (_nAaSamples == 0) {
_nAaSamples = 1;
}
if (_nAaSamples > 8) {
LERROR("Framebuffer renderer does not support more than 8 MSAA samples.");
_nAaSamples = 8;
}
_dirtyResolution = true;
}
void ABufferRenderer::setHDRExposure(float hdrExposure) {
_hdrExposure = hdrExposure;
if (_hdrExposure < 0.0) {
LERROR("HDR Exposure constant must be greater than zero.");
_hdrExposure = 1.0;
}
}
void ABufferRenderer::setHDRBackground(float hdrBackground) {
_hdrBackground = hdrBackground;
if (_hdrBackground < 0.0) {
LERROR("HDR Background constant must be greater than zero.");
_hdrBackground = 1.0;
}
}
void ABufferRenderer::setGamma(float gamma) {
_gamma = gamma;
if (_gamma < 0.0f) {
LERROR("Gamma value must be greater than zero.");
_gamma = 2.2f;
}
}
float ABufferRenderer::hdrBackground() const {
return _hdrBackground;
}
int ABufferRenderer::nAaSamples() const {
return _nAaSamples;
}
std::vector<double> ABufferRenderer::mSSAPattern() const {
return _mSAAPattern;
}
void ABufferRenderer::clear() {
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, _anchorPointerTextureInitializer);
glBindTexture(GL_TEXTURE_2D, _anchorPointerTexture);
glTexImage2D(
GL_TEXTURE_2D,
0,
GL_R32UI,
_resolution.x,
_resolution.y,
0,
GL_RED_INTEGER,
GL_UNSIGNED_INT,
nullptr
);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
static const GLuint zero = 1;
glBindBufferBase(GL_ATOMIC_COUNTER_BUFFER, 0, _atomicCounterBuffer);
glBufferSubData(GL_ATOMIC_COUNTER_BUFFER, 0, sizeof(zero), &zero);
glBindBufferBase(GL_ATOMIC_COUNTER_BUFFER, 0, 0);
}
void ABufferRenderer::updateResolution() {
PerfMeasure("ABufferRenderer::updateResolution");
int totalPixels = _resolution.x * _resolution.y;
glBindTexture(GL_TEXTURE_2D, _anchorPointerTexture);
glTexImage2D(
GL_TEXTURE_2D,
0,
GL_R32UI,
_resolution.x,
_resolution.y,
0,
GL_RED_INTEGER,
GL_UNSIGNED_INT,
nullptr
);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, _anchorPointerTextureInitializer);
glBufferData(
GL_PIXEL_UNPACK_BUFFER,
totalPixels * sizeof(GLuint),
nullptr,
GL_STATIC_DRAW
);
GLuint* data = reinterpret_cast<GLuint*>(
glMapBuffer(GL_PIXEL_UNPACK_BUFFER, GL_WRITE_ONLY)
);
memset(data, 0x00, totalPixels * sizeof(GLuint));
glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glBindBuffer(GL_TEXTURE_BUFFER, _fragmentBuffer);
glBufferData(
GL_TEXTURE_BUFFER,
MaxAverageLayers*totalPixels * sizeof(GLuint) * 4,
nullptr,
GL_DYNAMIC_COPY
);
glBindTexture(GL_TEXTURE_BUFFER, _fragmentTexture);
glTexBuffer(GL_TEXTURE_BUFFER, GL_RGBA32UI, _fragmentBuffer);
glBindTexture(GL_TEXTURE_BUFFER, 0);
glBindImageTexture(1, _fragmentTexture, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RGBA32UI);
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, _mainColorTexture);
glTexImage2DMultisample(
GL_TEXTURE_2D_MULTISAMPLE,
_nAaSamples,
GL_RGBA,
_resolution.x,
_resolution.y,
true
);
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, _mainDepthTexture);
glTexImage2DMultisample(
GL_TEXTURE_2D_MULTISAMPLE,
_nAaSamples,
GL_DEPTH_COMPONENT32F,
_resolution.x,
_resolution.y,
true
);
_dirtyResolution = false;
}
void ABufferRenderer::updateResolveDictionary() {
ghoul::Dictionary dict;
ghoul::Dictionary raycastersDict;
for (const auto& raycastPair : _raycastData) {
ghoul::Dictionary innerDict;
int id = raycastPair.second.id;
std::string namespaceName = raycastPair.second.namespaceName;
std::string raycastPath = raycastPair.first->getRaycastPath();
innerDict.setValue("id", id);
innerDict.setValue("namespace", namespaceName);
innerDict.setValue("bitmask", 1 << id);
innerDict.setValue("raycastPath", raycastPath);
raycastersDict.setValue(std::to_string(id), innerDict);
}
dict.setValue("raycasters", raycastersDict);
ghoul::Dictionary helperPathsDict;
for (size_t i = 0; i < _helperPaths.size(); ++i) {
helperPathsDict.setValue(std::to_string(i), _helperPaths[i]);
}
dict.setValue("helperPaths", helperPathsDict);
dict.setValue("raycastingEnabled", _raycastData.size() > 0);
dict.setValue("storeSorted", true);
dict.setValue("nRaycasters", static_cast<unsigned long long>(_raycastData.size()));
_resolveDictionary = dict;
OsEng.renderEngine().setResolveData(dict);
_dirtyResolveDictionary = false;
}
void ABufferRenderer::updateRaycastData() {
PerfMeasure("ABufferRenderer::updateRaycastData");
_raycastData.clear();
_boundsPrograms.clear();
_helperPaths.clear();
const std::vector<VolumeRaycaster*>& raycasters =
OsEng.renderEngine().raycasterManager().raycasters();
std::map<std::string, int> namespaceIndices;
// raycaster ids are positive integers starting at 0. (for raycasters,
// fragment type is id+1)
int nextId = 0;
int nextNamespaceIndex = 0;
for (auto &raycaster : raycasters) {
if (nextId > MaxRaycasters) {
int nIgnored = MaxRaycasters - static_cast<int>(raycasters.size());
LWARNING(fmt::format(
"ABufferRenderer does not support more than 32 raycasters. "
"Ignoring {} raycasters",
nIgnored
));
break;
}
RaycastData data;
data.id = nextId++;
std::string helperPath = raycaster->getHelperPath();
// Each new helper path generates a new namespace,
// to avoid glsl name collisions between raycaster implementaitons.
// Assign a new namespace or find an already created index.
if (helperPath == "") {
data.namespaceName = "NAMESPACE_" + std::to_string(nextNamespaceIndex++);
} else {
auto iter = namespaceIndices.find(helperPath);
if (iter == namespaceIndices.end()) {
int namespaceIndex = nextNamespaceIndex++;
data.namespaceName = std::to_string(namespaceIndex);
namespaceIndices[helperPath] = namespaceIndex;
_helperPaths.push_back(helperPath);
}
else {
data.namespaceName = "NAMESPACE_" + std::to_string(iter->second);
}
}
_raycastData[raycaster] = data;
std::string vsPath = raycaster->getBoundsVsPath();
std::string fsPath = raycaster->getBoundsFsPath();
ghoul::Dictionary dict;
// set path to the current renderer's main fragment shader
dict.setValue("rendererData", _rendererData);
// parameterize the main fragment shader program with specific contents.
// fsPath should point to a shader file defining a Fragment getFragment() function
// instead of a void main() setting glFragColor, glFragDepth, etc.
dict.setValue("fragmentPath", fsPath);
dict.setValue("fragmentType", data.id + 1);
try {
_boundsPrograms[raycaster] = ghoul::opengl::ProgramObject::Build(
"Volume " + std::to_string(data.id) + " bounds",
vsPath,
BoundsFragmentShaderPath,
dict
);
}
catch (ghoul::RuntimeError& error) {
LERRORC(error.component, error.message);
}
}
_dirtyRaycastData = false;
_dirtyResolveDictionary = true;
}
void ABufferRenderer::updateRendererData() {
PerfMeasure("ABufferRenderer::updateRendererData");
ghoul::Dictionary dict;
dict.setValue("fragmentRendererPath", std::string(RenderFragmentShaderPath));
dict.setValue("maxLayers", MaxLayers);
dict.setValue("maxTotalFragments", MaxLayers * _resolution.x * _resolution.y);
_rendererData = dict;
OsEng.renderEngine().setRendererData(dict);
_dirtyRendererData = false;
}
void ABufferRenderer::saveTextureToMemory(const GLenum color_buffer_attachment,
const int width, const int height, std::vector<double>& memory) const {
if (!memory.empty()) {
memory.clear();
}
memory.reserve(width * height * 3);
std::vector<float> tmpMemory(width * height * 3);
if (color_buffer_attachment != GL_DEPTH_ATTACHMENT) {
glReadBuffer(color_buffer_attachment);
glReadPixels(0, 0, width, height, GL_RGB, GL_FLOAT, tmpMemory.data());
}
else {
glReadPixels(0, 0, width, height, GL_DEPTH_COMPONENT, GL_FLOAT, tmpMemory.data());
}
for (auto i = 0; i < width*height * 3; ++i) {
memory[i] = static_cast<double>(tmpMemory[i]);
}
}
} // namespace openspace